
Polymorphism

If we have an inheritance hierarchy with several subclasses inheriting from a superclass, then we are

guaranteed that anything public from the superclass will be available for all the subclasses. So, if we

write code that uses only the public interface of the superclass, that code ought to work for the subclasses

too.

For any methods that are overridden, the appropriate version of the method will be called. So, we can

write code once that potentially could result in many different behaviors depending on the actual types of

objects involved at runtime. Also, we can write this code purely based on the superclass, and know that

any subclass -- even those only thought of and created much later – will work in this code.

A reference variable in Java can point to any object of its own type or of any subclass type. We can have

an array of the superclass type and fill it with various instances of different subclasses. We can also have

a variable of superclass type and not know which type of object it will be pointing at until runtime.

Note that since every class inherits from Object, a variable of type Object can point at any type of object.

However, we will only be able to call a limited number of methods, e.g. toString, that are defined in the

Object class

A reference variable of subclass type cannot point at an object of superclass type. Java checks what

methods are legal to call at compile time, based on the type of the variable, so if we could point a subclass

variable at a superclass object, it could potentially call a method that the object does not have.

.

Similarly, if a variable of superclass type is pointing at an object of subclass type, it is still only legal to

call methods defined for the superclass.

Compile Time vs Runtime

Polymorphism based on inheritance in this way is called subtyping. In Java, this kind of polymorphism is

based on instance methods. For an overridden method, the version called depends on the type of an

object at runtime.

Method overloading is also a form of polymorphism. Different versions of a method are called depending

on the type(s) passed to the method. But in this case, which version of the method is called is determined

at compile time, based on the type of the variable (or literal) passed to it. So, if there are two overloaded

versions of a method, one that takes a superclass type and one that takes a subclass type, and a superclass

variable is passed in, then the superclass version of the method will be called, even if the variable is

actually pointing at a subclass object.

When we say that variables and static members of a class cannot be overridden, only hidden, we mean

that they similarly do not behave according to inheritance-based polymorphism. Which variable or static

method is used is determined at compile time based on the type of the reference variable we are using to

access it.

So if Animal had an instance variable x and Sloth also added an instance variable x, every Sloth object

has two variables named x in it. If s is a Sloth variable pointing at a Sloth object, and we access s.x, we

get the x from Sloth. If a is an Animal variable pointing at the same Sloth object and we access a.x, we

get the x from Animal.

instanceof

If we have designed our classes well, we almost never need to know the actual type of the objects we are

dealing with. We just call the overloaded method and get the right behavior automatically. However, it is

sometimes useful to be able to check what type we are dealing with, to determine if this is a special case.

The instanceof operator returns true if an object is an instance of the given type. (Vocabulary note: all

subclass instances are considered to also be instances of the superclass, but not the reverse.)

Once we have used instanceof to check whether a variable is actually pointing to an object of the right

type, we can use casting to point a variable of that type at the same object so that we can call methods

specific to that type.

equals()

The Object class contains a few methods inherited by all other types. One of these is toString(). Another

is the equals() method. The version of equals() in Object does exactly the same thing as ==. If we want

to define a more interesting type of equality for our classes, i.e. based on the value of instance variables,

then we should override equals().

The equals method takes type Object, so we often use instanceof inside it to check whether what we have

been passed is a type for which equality makes sense. Depending on the situation, instances of one class

might be considered potentially equal to instances of another class.

Note that while we can overload the equals() method so there is a version that takes the class type, this

does not eliminate the need for instanceof, since which version is called will depend on variable type, not

object type.

Splitting the logic up into different methods for the different types still makes sense, we just need to

ensure that the Object version can handle any type of object it gets.

