Inheritance

In many situations, we have several classes with common structure — they have instance variables and
behaviors in common. In this case, it is appropriate to put these common elements into a single
superclass and have the separate classes become subclasses that inherit fromit. If a class inherits from
another, it has all the instance variables and methods from that class.

Dog Cat Budgie
String name String name String name
int age int age int age
String breed String markings String color
void eat() void eat() void eat()
void sleep() void sleep() void sleep()
void bark() void miaow() void tweet()

abstract out
common clements

String name
int age
void eat()
void sleep()

Inheritance represents an is-a relationship between classes. We look at the classes involved and identify
what they have in common that makes them all special cases of a more general, more abstract category.
We abstract out what they have in common. For instance we can see that Cats, Dogs, and Budgies all
have names and ages and can eat and sleep. These characteristics define the more general type Animal,
and we can say Cat is-a Animal, that is Cat is one type of Animal.

The subclasses can add more instance variables and behaviors that are specific to their type.

class Animal
String name
int age
void eat()
void sleep()

Dog extends Animal Budgie extends Animal
String breed String color
void bark() void tweet()

Cat extends Animal
String markings
void miaow()

Contrast this with a has-a relationship, in which one type is owned by, or is a component that makes up,
another type. A caris-a vehicle. A car has-a motor. For situations best described by is-a we use
inheritance. For situations best described by has-a we use composition which is the technical term for one
class having an instance variable whose type is defined by another class. So, a Car might inherit from
type Vehicle, but have an instance variable of type Motor.

If a subclass inherits from a superclass, then whenever we create an instance of that class, an object of the
superclass type exists inside the subclass object. In Java this inner object cannot be treated as a separate
object or reassigned.

Dog

Budgie
brv.laed color
void bark(} void tweet()
Animal
e Amnimal
age name
void eat() agvta
void sleep() vo?d eat()
void sleep()
Cat
markings
void miaow()
Amnimal
name
age
void eat()
void sleep()

An instance of a subclass can use all the public instance variables and methods it has inherited just as
directly, through the dot operator, as any variables or methods directly defined within the class.

puklic clasa Monster {
pulrlic int teeth;
pubklic wvoid eat () {
S/ eat people

public class VampireBat extends Monster |
public S5tring name;
public weid Ely () {

S/ fly arownd
}

public void roar() {
S/ make a noise

}
i

}

public class Testy|
puklic static void main (String[] args) |
Monster m = new Monster()
m.teeth = 5;
m.eat()’
m. roar() ;

VampireBat v = new VampireBat() :
wv.teeth = 10;

v.eat()

v.roar() :

v.name = "Bob":

v.E1ly () :

1

Overloading Methods

In some cases, an inherited method does not implement the behavior in a way appropriate to the subclass.
The subclass can then override the behavior by re-defining the method. (Note that it can also overload
the method, which is not the same thing.) The notation @Override is used to mark that a method is

overloading an inherited method. Doing so acts as a visual reminder that a method replaces an inherited
version, but also the IDE checks that a method marked @Override is actually overriding and not
accidentally overloading (e.g. by having different parameters).

public claas Monster {

public void eat () {
Syatem. cut .println{"Eat people!");

}

public claas Cockicldonster

S/ override eat
public wvoid eat () {

extends Monster {

Byatem. out . println("Eat cockiea!");

}

S/ overload eat

public woid eat (int howmarmyy) |
System. cut .println(“Eat ™ +
hovmany + " delicious coockies!™) ;

When we call a method for an instance of a class, at compile-time Java simply has to check that the class
has that method (either by defining or by inheritance). At run-time, Java looks for the method in the
object, and uses the first version it finds, working its way inward — so if the method is overridden, Java
automatically calls the version for the subclass, but if not it will find the version in the superclass object

within the subclass object.

Monster
Monster m = new Monster() :
teeth . - _

: m.eat(): // original version
void Eato VanpireBat v = new VampireBat() :
void mar[} wv.eat(): // original wversion

CookieMonster ¢ = new CookieMonster():

c.eat(); // override wversion

c.eat(3) : S/ overload version
CoolieMonster VampireBat

void eat() name

void eat(int) void fly()

teeth teeth

void eat() void eat()

void roar() void roar()

The final keyword can be used on a method to ensure that it cannot be overridden by any subclass, if it is
important that all classes do this behavior the same way. If a method is to be called by a constructor (e.g.
an accessor or mutator) it is often marked final, so that the constructor canrely on it having specific

results.

If the class itself is marked final, then it cannot be inherited from at all.

Hiding Instance Variables

It is legal for a subclass to declare an instance variable with the same name as an instance variable in the

superclass. This variable can be exactly the same, or can differ by type, whether the variable is
public/private, whether it is final, and whether it is static. In this case, the variable is not overridden but

hidden (the difference won’t be clear until we talk about polymorphism).

If we use the variable name in the subclass, it will refer to the subclass version, although we canrefer to
the superclass version using super. (see later section).

Deliberately naming a subclass instance variable the same as a superclass instance variable is a bad idea.
Why is this evenlegal? Well, suppose it were not. Suppose a subclass has already added an instance
variable x, and then you go back and add a variable x to your superclass. If hiding instance variables is

illegal, then the subclass is broken!

Inheritance Hierarchy

We can have many levels of inheritance, which we typically imagine as a tree. Nothing is ever inherited
up the tree or across from one subclass to another.

punlic class Weapon
inheritance tree . Bublic veid attask ()l
I Systam. sut. printlng " BOW!")
public clags PrejectileWearen axboands Weapon| lu':uli: weld plokUpi) {
puivlie ok cms T4 plek up maE:&j'n
public veld load() | 1 i !

load Waapam !

L

}
T public ::Laui'ﬁasgqé?magcn axtands Waapon |
f
I
|
I|
| public weld sharpan() |
. /4 sharpan weapoen
public clags Crosabsw axbands FrojaectllaWeapon| 1
pumlic wind () | publis weld attask() |
§ wind ersaabew Systam. ont. peinln (“THRTST") :
1 1
1 L~
1 §
|
II
;
public clags Swerd axtands Edgadieapoen|

SwordTyra Cypa:
doubla walght:
1

public clags Dagger axtands Edgad Waapan|
Eeenlaan hiddon :

1

If a class does not explicitly inherit from another class using the keyword extends, then it inherits from
the class Object, in which some basic methods such as toString are defined.

Weapon
damage
attack()
pickup()
toSting()
Obyect
toSting|)
Dagger
Crozsbow hidden
wind()
ProjectileWeapon EdgedWeapon
FTHNG sharpen()
load() attacld)
Weapon Weapon
damags damage
attack() attack()
toltring() toltring()
Objact Ohbjact
toltring() toString()

super

The keyword super allows a subclass to refer to its superclass. The super keyword is sometimes used for
clarity, like this, to make explicit which variables and methods are inherited and which are specific to the
class. Italso allows a subclass to call a method from a superclass that it has overridden. This is often
used when the subclass wants to do the same as its superclass, but with some additions.

In some ways, super acts like a reference to the superclass object inside the subclass instance, but unlike
this, it does not behave like a real reference variable. You cannot, for instance, pass it to a method or
assign a variable to its value (or the reverse). You also cannot use super.super or anything similar to work
up the inheritance tree more than one level.

public clasa Monster {
pubklic int teeth;
pubklic boolean acary;

public Monater{) {
teeth = 07
acary = true;

}

public String toString () {
retum "monater with " + teeth

+ " teeth at addreaa" + auper. toStringl) ;

}

public clasa VampireBat extenda Monater {
public String name;

public VampireBat () {

S/ super(); S/ Java puts this in imvisibly if we don't
thia.name = "Vliad"”;

super.scary = false;// same as scary = false

}

public String toString () {

return “vamire ™ + super.toString () ;
}

super()

Methods of a superclass are inherited by the subclass, but constructors are not. By default, a subclass
constructor silently calls the default superclass constructor as the first line of the subclass constructor.

If you wish to call a parameterized superclass constructor instead, you can do so explicitly using super()
(with the appropriate parameters). A callto super() must be the first line of the constructor (so you cannot

use both super() and this() in the same constructor). The superclass constructor is called before any
initializer block.

public clasa Monster {
pubklic int teeth;
pubklic boolean acary;

public Monaster{int twmm) {
teeth trum;
acary true;

}

public String toString () {
retum "monater with " + teeth
+ " teeth at addreaa" + auper. toStringl) ;

}
pubklic clasa VampireBat extends Monster {

public VampireBat () {
auper (2) ;
super.scary = false;// same as scary = false

}

public String toString () {

return “vamire ™ + super.toString () ;
}

As soon as we define a parameterized constructor in a class, Java does not then provide an invisible
default constructor as well. So, suppose we do this in the superclass. Then, whenwe create a subclass,
Java will create an invisible default constructor for the subclass, which invisibly calls the default
superclass constructor, which doesn’t exist. The compiler will then give an error on this invisible line of
code in an invisible method as soon as the subclass is marked as extending the superclass.

To fix this, either add a default constructor in the superclass, or a constructor in the subclass that uses
super to call the parameterized constructor from the superclass.

pubkrlic clasa Monster {
public inkt teeth;
pubklic boolean acary:

pubklic Monater(int tmmm) {
testh = tum;
acary = true;

}

public String toString (O {
retum "monater with " + teeth
+ " teeth at addreaa" + super. toStringl() ;

// no conastractor,

S/ a0 java invisibly includes default constructor
J which calls super ()

S/ oince no defamlt constructor in Monster ERRCE
/i 23 soon a3 we add extends Monater

pubklic clasa VampireBat extends Monster {

}

public, private, protected
Elements of a class that are public are available to all other classes.

Elements of a class that are private are not available to any other classes, including subclasses. This
means that subclasses cannot access their own inherited instance variables (except through accessors and
mutators).

The keyword protected marks an access level between public and private. If a variable is protected, it is
directly accessible to subclasses as well as the class itself. However, protected variables are also
available to all classes in the same package. We have been using single packages for simplicity.
Remember not to misuse this to get direct access to instance variables from a test harness, for example.

protected access simplifies writing code, however, like making parts of a class public, it locks us to one
implementation. We cannot remove or change the type or name of any protected variable (or method)
without potentially breaking subclasses. So, it is generally safer coding to have the subclasses go through
accessors and mutators.

Inheritance and Static

If a class has a static variable, there is only one copy of that variable for that class and all its subclasses.
It can be accessed with the dot operator using the name of the superclass or any subclass. The same goes
for static methods.

It is not possible to override a static method, but it is possible to hide it (again, the distinction involves
polymorphism). So, it is legal to define a static method in a subclass which has the same signature as a
static method in the superclass.

