
Arrays
Variables give us the ability to store individual numbers, strings, boolean values, or object
addresses, but for many tasks we have to deal with dozens, hundreds, or thousands of
such values. Instead of creating thousands of individual variables, we can instead use an
array structure to hold a list of values that are all of the same type. Arrays have built-in
numbering and we can use this to easily process values that live in an array using a for loop.

Array Structure
Suppose that we have a list of integer grades that we have to find the average for, and then
print. If we don’t know about arrays, the best we could do is create a variable for each
grade, and name them grade0, grade1, etc. Then every task we want to do with this grades,
we have to manually do line by line:

 int grade0 = 67;

 int grade1 = 71;

 int grade2 = 99;

 // ... do grade3 through grade8

 int grade9 = 86;

 double average = 0;

 average = average + grade0;

 average = average + grade1;

 // ... do grade2 through grade8

 average = average + grade9;

 average = average / 10;

 System.out.println("Grades:");

 System.out.println(grade0);

 System.out.println(grade1);

 // ... do grade2 through grade8

 System.out.println(grade9);

Note that even in writing out this much, I was too lazy to write every line, I just said things
like “do grade3 through grade8” to indicate that we want to do the same thing to the
variable grade followed by a number that changes.

An array gives us a way to number variables in a list, where the number is a separate part
that we can programmatically change in order to work our way through the list.

At the hardware level, to create an array we would set out a sequence of rows in Main
Memory to hold our list of values – each row in the array acts like a separate variable for
storing a value, but the array lets us treat the whole array as one object when we need to.

In Java, arrays are always stored on the heap, just like objects, and the array variable itself
is assigned the memory address of the first of these rows. Each subsequent value in the
array will be stored on a new row, so we can think of each position in the array as an offset
from that first row. The location of the first value is offset by 0, the next value is offset by 1,
etc.

We use these numbers, indicating how many rows down to move in the array, as the array
index, which is always an integer value (you can’t move down half a row in memory). We
will use square braces to surround the index, at the end of the name of the array. Since we
start on the top row of the array, with no offset, indices1 always start at 0.

The list of values stored in the array are its elements.

To create an array of any type, we have to say how many rows in memory to reserve for the
whole list of elements. We also use square braces around this number when we create the
array.

// declaring an array variable (no actual array)

type[] arrayVariableName;2

// initializing the array (creating it on the heap)

arrayVariableName = new type[sizeOfArray];

// putting a value into an array at an index

arrayVariableName[index] = valueForElement;

Let’s rewrite the average code above, using array syntax:

// declare an array of ints called grades 1
// and set it up to be size 10 2

// “int array grades is size ten” 3
// ”grade is an int array, size 10” 4
// ”grade is an array of 10 ints” 5

1 This is the plural of index.
2 It is also legal to say
type arrayVariableName[]

but using type[] emphasizes that “array of type” is the type of the variable, which is a more standard way to
think of it in java.

int[] grade; // array variable, no array object yet 6
grade = new int[10]; // create array object on heap 7
 8
grade[0] = 67; // put 67 in 0th row of the grades array 9
grade[1] = 71; // put 71 on 1th row of the grades array 10
grade[2] = 99; // put 71 on 2th row of the grades array 11
// ... do grade[3] through grade[8] 12
grade[9] = 86; // put 86 on 9th row of the grades array 13
 14
double average = 0; 15
// add the value from the 0th row of the array 16
average = average + grade[0]; 17
// add the value from the 1th row of the array 18
average = average + grade[1]; 19
// ... do grade[2] through grade[8] 20
average = average + grade[9]; 21
average = average / 10; 22
 23
System.out.println("Grades:"); 24
System.out.println(grade[0]); 25
System.out.println(grade[1]); 26
// ... do grade[2] through grade[8] 27
System.out.println(grade[9]); 28

Let’s look at what’s happening under the hood. In line 6 we are declaring the array variable,
but we have not yet created the array itself, so all we have so far in memory is

int[] grade;

variable MM value
 [stackframe: main (args)]
args 50 null
grades 51 null
 …

In line 7 we use new to actually create the array on the heap, and store the memory address
of the array in the grades variable.

grade = new int[10];

variable MM value

 [stackframe: main (args)]
args 50 null
grades 51 MM100
 …

[heap]

Index: 0 100 0
1 101 0
2 102 0
3 103 0
4 104 0
5 105 0
6 106 0
7 107 0
8 108 0
9 109 0

 …

Rows 9, 10, 11, and13 use the elements of the array as variables to store values (the code
also assumes that we fill in the other rows, but let’s just look at what these lines would do:

grade[0] = 67; // put 67 in 0th row of the grades array

grade[1] = 71; // put 71 on 1th row of the grades array

grade[2] = 99; // put 71 on 2th row of the grades array

grade[9] = 86; // put 86 on 9th row of the grades array

variable MM value
 [stackframe: main (args)]
args 50 null
grades 51 MM100
 …

[heap]

Index: 0 100 67
1 101 71
2 102 99
3 103 0
4 104 0
5 105 0
6 106 0
7 107 0
8 108 0
9 109 86

 …

All we have done so far is switch to array syntax, we haven’t yet made use of the strength of
arrays to simplify this code. We need a little more understanding first.

Array Index

Notice the somewhat odd wording I used, I called grade[0] the 0th row and grade[1] the 1th
row. Talking about the “first” row of an array can be ambiguous: do I mean the very first
one, which is at offset 0, or the first one as in the one numbered “1” which is actually the
second row in the array, offset by 1? Because of this, people have come up with different
ways to refer to the rows such as 0th and 1th 3 or always saying “index 0” and “index 1” or
“offset 0” and “offset 1” etc.

When talking about code, we generally just say the name of the array followed by “sub”
then the index so “grade sub 0” to mean grade[0] or “grade sub 1” to mean grade[1] or even
leave out the sub and just say “grade 0” to mean grade[0] and “grade 1” to mean grade[1]

Because index always starts at 0, the last index in the array is always 1 less than the size we
created the array at. We initialized grade with size 10, so grades runs from index 0 to index
9 – it takes up 10 rows, but those rows are numbered 0..9.

I was able to do math using the elements of the array and print the elements of the array,
just like any other integers. At the moment variable names like grade[3] look strange
because they are new, but they really are just variable names, and I can do anything with
grade[3], an integer that lives in an array structure at index 3, that I could have done with an
integer variable grade3, an integer that lives in an individual variable.

Using Values in an Array

So far, changing to array format hasn’t bought us anything, we’re still manually moving
through just as many lines of code. This will change when we start using for loops with
arrays. Let’s look at a few more array examples first

// declare variable rents as an array that holds

// 10 double values, indices 0 to 99

double[] rent = new double[100];

// put the value 1560 at index 0 in the rent array

rent[0] = 1560.00;

// ... fill in rent[1] to rent[89]

// put the value 1290 at index 99 in the rent array

rent[99] = 1290.00;

3 Or aloud, pronouncing 1st as “wunst” to indicate index 1.

// using a variable to hold the index

int myAptNum = 67;

rent[myAptNum] = 1350.00;

// same as

rent[67] = 1350.00;

// my rent is stored on row 22

// and I have to pay $132 in utilities

double monthTotal = rent[22] + 132.00;

// declare variable petNames as an array

// that holds 15 string values

// indices 0 to 14

String[] petNames = new String[15];

// put the value “Fluffy” at index 0 of the petNames array

petNames[0] = "Fluffy";

// . . . fill in petNames[1] to petNames[13]

// put the value “Spot” at index 14 of the petNames array

petNames[14] = "Spot";

// my pet is on 4th row (index 3) and

// I am printing about a vet appointment

int x = 4;

System.out.println(petNames[x - 1] + " has a vet appointment on

May 3.");

// declare variable catCanFly as an array

// that holds 5 boolean values

// indices 0 to 4

boolean[] catCanFly = new boolean[5];

// put the value true at index 0 of the catCanFly array

catCanFly[0] = true;

// . . . fill in catCanFly[1] to catCanFly[3]

// put the value false at index 4 of the catCanFly array

catCanFly[4] = false;

// get which row their cat is on and then

// advise them on what activity to do

System.out.println("what index is your cat at in the array?")

int catIndex = scan.nextInt();

if (catCanFly[catIndex]) {

 System.out.println("Go ahead and take your cat flying");

} else {

 System.out.println("Just play with your cat on the ground");

}

Since the array index is always an int, no matter what type is in the array, we can use literal
int values, or anything at evaluates to an integer, like an int variable or an expression, in the
square braces to indicate which row in the array we want, which we did in the above code.

CS Numbers vs Human Numbers

At the end of that code, we asked the user for the array index to use. Most of the time,
users would be confused by using “computer scientist numbers” that start at 0, so we
would adjust between these and “human numbers” that start at 1 when talking to a user:

// get which row their cat is on

System.out.println("which cat (1 to 5)?");

int catIndex = scan.nextInt();

// they entered a human number

// subtract 1 to make it a correct array index

catIndex = catIndex - 1;

// advise them on what activity to do

if (catCanFly[catIndex]) {

 System.out.println("Go ahead and take your cat flying");

} else {

 System.out.println("Just play with your cat on the ground");

}

Array Initialization
Like instance variables, the contents of arrays are initialized with the usual default values: 0
for numbers, false for booleans, null for everything else.

If we know the values we want for an array when it is created, we can do a special
initialization to put them all into place at once. We do this by putting them into a comma
separated list inside curly braces:

// special initialization

String[] zooAnimals = {"elephant", "zebra", "hippo", "penguin",

"aardvark"};

// same as saying

String[] zooAnimals = new String[5];

zooAnimals[0] = "elephant";

zooAnimals[1] = "zebra";

zooAnimals[2] = "hippo";

zooAnimals[3] = "penguin";

zooAnimals[4] = "aardvark";

Array Size
Array structures are static, which means that whatever size they were when we created the
array, they stay that size and cannot change. Trying to put data outside the size of the array
is a problem. No array has negative indices, and remember that valid indices in the array
always go up to one less than the size.

Suppose we used an invalid index in an array. This causes a runtime error that causes the
program to halt, an ArrayIndexOutOfBoundsException.

We know it is never safe to use a negative number as the index, but to avoid the index being
too big, we need to know how big the array is. Arrays in java know their own length, which
we can get to using the .operator. Although this makes it look like the length is an instance
variable, remember that it cannot be changed.

// declare variable petNames as an array

// that holds 8 string values

// indices 0 to 7

// so petNames.length is 8

String[] petNames = new String[8];

petNames[0] = “Muffy”;

petNames[1] = “Fluffy”;

petNames[2] = “Clyde”;

System.out.println("there are " + petNames.length + " pet names

in our list");

// put “Rover” in the last position in petNames

// which must be its size minus 1

petNames[petNames.length - 1] = "Rover";

For the purpose of examples, I will put the length at the end of the array when showing
examples, so at the end of this code:

variable MM value
 [stackframe: main (args)]
args 50 null
petNames 51 MM100
 …

[heap]

Index: 0 100 “Muffy”
1 101 “Fluffy”
2 102 “Clyde”
3 103 null
4 104 null
5 105 null
6 106 null
7 107 “Rover”

length 108 8
 …

For Loops for Arrays
The real power of arrays comes from the fact that we can use a variable in the square
braces, and use a for loop to change that variable. As a result, we can write a for loop to do
the same thing to each element of the array. We want to end up writing code like

// add up all the grades in the array

for (int i = 0; i < grade.length; i++) {

 total = total + grade[i];

}

But let’s work our way up to that, to make sure we understand what we’re doing.

First, let’s revisit doing all the steps of an average manually, using array syntax:

// new list of grades using special initialization

int[] grade = {54, 99, 87, 68, 75, 98, 74, 82, 90, 49};

double average = 0;

double total = 0;

// go through each grade in the array, adding it onto the total

total = total + grade[0];

total = total + grade[1];

total = total + grade[2];

total = total + grade[3];

total = total + grade[4];

total = total + grade[5];

total = total + grade[6];

total = total + grade[7];

total = total + grade[8];

total = total + grade[9];

// math for the average

average = total / 10;

Since we can use an int variable in the square braces as the array index, we could rewrite
the above as:

int[] grade = {54, 99, 87, 68, 75, 98, 74, 82, 90, 49};

double average = 0;

double total = 0;

// variable to use as index

int i = 0;

total = total + grade[i];

i = i + 1; // now the index is 1

total = total + grade[i];

i = i + 1; // 2

total = total + grade[i];

i = i + 1; // 3

total = total + grade[i];

i = i + 1; // 4

total = total + grade[i];

i = i + 1; // 5

total = total + grade[i];

i = i + 1; // 6

total = total + grade[i];

i = i + 1; // 7

total = total + grade[i];

i = i + 1; // 8

total = total + grade[i];

i = i + 1; // 9

total = total + grade[i];

average = total / 10;

If it makes sense to you that the two versions of the code above do the same thing, now we
can make the big jump forwards: what we want to do are just the two lines

total = total + grade[i];

i = i + 1;

over and over. And that’s exactly what a for loop is designed to do! We’ll make i our for loop
counter variable, and update i as part of the for loop. So now we can rewrite the code as

int[] grade = {54, 99, 87, 68, 75, 98, 74, 82, 90, 49};

double average = 0;

double total = 0;

// add up all the grades in the array

for (int i = 0; i < 10; i = i + 1) {

 total = total + grade[i];

}

average = total / 10;

But what if we have more or fewer grades? Well the initialization of the array would have to
change, but the rest of the code wouldn’t get any longer. The only part that would have to
change is the 10, which is the size of the array. But what if we are getting the grades from a
method that doesn’t tell us how many there are? We know how to ask the array itself for
that value, so we could do

int[] grade = getGrades();

double average = 0;

double total = 0;

for (int i = 0; i < grade.length; i++) {

 total = total + grade[i];

}

average = total / grade.length;

This will still work even if there are 100 or 1000 or more grades.

When we need to solve a problem involving an array, the answer is almost always to use a
for loop, and that for loop almost always has the form

for (int i = 0; i < arrayVariable.size; i++){

 do something using arrayVariable[i]

}

We would think of arrayVariable[i] as the “current element of the array in this for loop.”

So let’s print the elements of the grades array, but number them. If we are printing for a
user to see, remember that we want to print using human numbers, not CS numbers, so we
will need to increase the number when we print

for (int i = 0; i < grade.size; i++){

 System.out.println(“Grade #” + (i + 1) + “: “ + grade[i]);

}

It’s the same for loop, but inside the thing we are doing with “the current element” grade[i]
is printing it, with some nice formatting, including adding 1 to the index, so we get
something like “Grades #1: 54” etc.

Random Numbers
Suppose I want to have a list of numbers in an array to test some code, but I don’t want to
spend the time reading in values from a user, and I want to try lots of different values to
make sure the code works for any situation. Java provides tools for generating random
numbers.

Well… tools for generating pseudo-random numbers. Unless we are getting values from
some truly random outside source4, the “random” numbers in computing are always
generated by some process that is complex enough to look random, but technically is not
actually random. This shouldn’t matter unless we are relying on the randomness for
privacy or security reasons; in those cases we want to make sure that our results are
random enough that some outside person couldn’t do the same calculation themselves to
find out what our numbers were.

For most purposes, the Random class generates values that are as random as we need. A
Random object has a number of behavior methods that can generate random values for
Java’s primitive types. Since most programs don’t need random numbers, you will need to
add an import statement to be able to use Random.

First we need to create the Random object, then we can use it to generate actual random
values.

// needed import at the top of the class for this

// create Random object that generates random values

Random randGen = new Random();

// generate a random int – ANY int value is possible

int anyNum = randGen.nextInt();

// generate a random int from 0 up to but not including 10

int singleDigit = randGen.nextInt(10);

// generate a random double from 0.0 to 1.0 (inclusive)

double d = randGen.nextDouble();

// generate a random true or false (50/50)

boolean coinFlipHeads = randGen.nextBoolean();

Notice that there are two versions of nextInt(), the one with no parameters could give any
int: large, small, positive, negative, zero. The one that takes an int parameter will always

4 For instance a company could generate random numbers by pointing a camera at a large number of lava
lamps and using their constantly changing shapes to set the binary digits of a random number. Technically,
with a complex enough fluid dynamics modeling program and the complete physical specifications of the
lamps, the temperature in the room, etc, someone could generate these numbers too, but this would be
pretty random.

generate an int from zero up to but not including the value given, so if we give it 10, we get
numbers from 0 to 9.

The nextDouble() method, meanwhile, always generates a double from 0.0 to 1.0. It turns
out that this is enough to allow us to get to any range of doubles by doing some basic
math5. If we want a larger range, we just multiply the result. If we want the range to start
higher or lower than zero, we add to or subtract from the result.

// generate a random double from 0.0 to 1.0 (inclusive)

double d = randGen.nextDouble();

// generate a random double from 0.0 to 100.0 (inclusive)

double d = randGen.nextDouble() * 100.0;

// generate a random double from -50.0 to 50.0 (inclusive)

double d = randGen.nextDouble() * 101.0 – 50.0;

Note that we could do the same kind of adjustment on the result of the version of nextInt
that takes a parameter to move its range up or down.

So we can use these random generation methods to fill an array with random values.

Another common way we use random numbers with arrays is to choose a random value
from a list. The idea is: first put the list of values you want to choose from into an array,
then generate a random number that is a valid index in that array. You can then use the
random index to extract a random value from the list:

// array of days of the week

String[] days = new String[] { “Monday”, “Tuesday”, “Wednesday”,

“Thursday”, “Friday”, “Saturday”, “Sunday”};

// generate a random index valid in the array

// a value from 0 up to but not including length of the array

int randIndex = randGen.nextInt(days.length);

5 Doubles in Java represent real numbers in mathematics. There are as many real numbers between 0.0 and
1.0 as there are real numbers total. No, really. This is because the number of real numbers is what we call
uncountably infinite; this particular class of infinity has this counterintuitive property, which I will happily
show you the proof for if you come ask me about it in office hours. It’s a nice proof and doesn’t require any
complex math.
To be fair, doubles only represent reals; the actual number of doubles is constrained by how many binary
patterns we can fit in 64 bits, and so technically doubles work a little differently than reals, but the math still
works out well enough in Java for most purposes.

// a randomly chosen day from the array

String randomDay = days[randIndex];

Sometimes when you are using random numbers to test your code and you discover that
you have an error, it is useful to be able to test the code with the same sequence of
“random” numbers over and over until you have fixed the problem. There is a
parameterized constructor for the Random class that takes a seed, a starting value for the
“random” calculation used to generate the sequence of random numbers. If you give the
constructor a seed, you will always get the same sequence, and then you can change the
seed to test with a different sequence, knowing that if you find an error with those values,
you’ll be able to make changes and test again with the same values

// needed import at the top of the class for this

// create Random object that generates random values

// using a seed value so it generates the

// same sequence every time the program runs

int6 seed = 989;

Random randGen = new Random(seed);

// this will print the same sequence of 100 numbers

// each time the program runs as long as it uses the

// same seed

for (int i = 0; i < 1000; i++) {

System.out.println(randGen.nextInt());

}

Arrays and Methods
Array variables are like any other variables; they can be local variables in any methods, and
we can pass them into methods and return them from methods. We just need to use all
the rules for arrays and all the rules for methods.

Array parameters

Here a method that takes two arrays as parameters is called by main:

// takes an array of ints and an array of booleans

// as parameters

public static void chkArrays(int[] intList, boolean[] booList) {

6 Technically, this should be the type long, another primitive variable type for whole numbers that uses more
bits than an int, so we can get more different seeds. We’ve left long out of our discussions for simplicitly

 int iCount = 0; // how many zeroes in int array

 for(int i = 0; i < intList.length; i++) {

 if (intList[i] == 0) {

 iCount++;

 }

 }

int bCount = 0; // how many zeroes in int array

 for(int i = 0; i < booList.length; i++) {

 if (booList[i] == 0) {

 bCount++;

 }

 }

 System.out.println(“There are “ + iCount + “ zeroes and “

 + bCount + “ falses”);

}

public static void main(String[] args) {

 int[] numList = new int[]{1, 0, 0, 2, 3, 0, 4, 5, 0};

 boolean[] tfList = new boolean[]{true, false, true,

true, false, false, false, true};

// call the method, passing it the addresses

 // of the two arrays

 chkArrays(numList, tfList);

}

Notice that there were no square braces when we passed the arrays into the method. We
usually think of this as “passing the whole array” rather than an individual element, but of
course what we are really doing is passing the value of the array variable, which is just the
memory address of the start of the array on the heap.

Returning Arrays

Now let’s have a method that returns an array.

// method that returns an array of ints

public static int[] getGradeList() {

 Scanner scan = new Scanner(System.in);

 System.out.println(“How many grades”);

 int howMany = scan.nextInt();

 // create array to return later

 int[] gradeList = new int[howMany];

 // read in grades

 for (int i = 0; i < gradeList.length; i++) {

 System.out.println(“what is grade #“ + (i+1));

 gradeList[i] = scan.nextInt();

 }

 // return the memory address of the array on the heap

 return gradeList;

}

public static void main(String[] args) {

 int[] grades = getGradeList();

 // code to do things with grades…

}

Again, when we return, we don’t use square braces because we are returning “the whole
array” or rather, the address on the heap where the array was created. As usual, if a
method returns an array, it is important that we catch that result in a variable or pass it to
another method (we can’t just stick it in println, because arrays print as memory
addresses, not the contents).

Arrays in Classes
Array variables are like any other variables; they can be used as instance variables if the
design of a class includes a list of values of some type.

Here is a the start of a class with a boolean array as an instance variable. We are currently
marking it public, but only so the example can more clearly show how array instance vars
and classes interact, it should be private like any other instance variable.

Like any other instance variable, an array instance variable starts with a default value, null,
and it is the default constructor’s job to set up array instance variables, in a way
appropriate to how the class uses them. Some array instance variables might be left null
until they are needed during a behavior method, others we may know the length of in the
constructor, and we might even know some values.

In this class representing a vacation cabin, we have an array for keeping track of which
months the cabin is booked, and so in the constructor we set up the array to be length 12.
We’ll also decide that by default the owners always use the cabin for themselves in
December:

public class Cabin {

 // which months is the cabin booked

 // currently null

 public boolean[] monthsBooked;

 // how many bedrooms it has

private int bedrooms; //accessor, mutator…

 // default constructor sets up the instance vars

 public Cabin() {

 setBedrooms(1);

 // twelve months in the year

 monthsBooked = new boolean[12];

 // always booked in December

 monthsBooked[11] = true;

 }

}

// in a main…

Cabin summerPlace = new Cabin();

// booked in June, July, August

// “summerPlaces’ monthBooked array sub 5 is true”

summerPlace.monthsBooked[5] = true;

summerPlace.monthsBooked[6] = true;

summerPlace.monthsBooked[7] = true;

Because we made the array instance variable public, we could use the dot operator to
access it from the Cabin variable, and then use the square braces to go inside the array and
set some of its elements. In memory:

variable MM value
 [stackframe: main (args)]
args 50 null
summerPlace 51 MM100
 …

[heap]

 100 monthsBooked null

 MM200
bedrooms 01

 …

Index: 0 200 false
1 201 false
2 202 false
3 203 false
4 204 false
5 205 true
6 206 true
7 207 true

… … …
11 211 true

length 212 12
 …

Accessors and Mutators for Array Instance Variables?

We know that making the array instance variable public was wrong, because instance
variables should never be public. For all other instance variables, we have created
accessors and mutators. We could do this for array instance variables:

public class Cabin {

 // which months is the cabin booked

 // currently null

 public boolean[] monthsBooked;

 // how many bedrooms it has

private int bedrooms; //accessor, mutator…

 public boolean[] getMonthsBooked() {

 return monthsBooked;

 }

 public void setMonthsBooked(boolean[] newMonths) {

 if (newMonths != null && newMonths.length == 12) {

 monthsBooked = newMonths;

 }

 }

}

// …in a main

Cabin winterPlace = new Cabin();

winterPlace.getMonthsBooked()[0] = true; // January

winterPlace.getMonthsBooked()[1] = true; // February

Cabin inTheWoods = new Cabin();

boolean[] octOnly = new boolean[12]; // all false

octOnly[9] = true; // booked in spookiest month

inTheWoods.setMonthsBooked(octOnly);

Notice that since getMonthsBooked() returns an array, we were able to use square braces
directly on its result, combining the rules for a method that returns (an array) with the rules
for arrays.

But actually, we would not usually provide public accessors and mutators for an array.
Once an outside class like main has access to the memory address of our array instance
variable, it has complete control over the contents of that array, which violates our
principle of encapsulation; there’s no point in making the array private if the accessor and
mutator actually give outside classes complete control over the array anyway.

In some cases, we might create an accessor an mutator that always make a copy – the
accessor copies the instance variable and returns that copy, the mutator makes a copy of
the parameter array and stores the copy in the instance variable. This way we get the
accessor and mutator behavior we want but the outside class can’t mess up our array.

But it is far more common just not to have the accessor or mutator for an array instance
variable at all, and instead provide other methods that allow outside classes to try to affect
or view the contents of the array without exposing the address of the whole array. For the
purposes of this course, arrays are the exception to our usual rule: you should not create
accessors or mutators for array instance variables unless the assignment says so explicitly.

Searching Arrays
Arrays give us a way to save large lists of data. Sometimes we want to just process every
element, but sometimes we want to know if an array contains a specific value, and if so,
where in the array (at what index) that value occurs. For simplicity we will assume that
either the value only appears once or that we are always interested in the first copy of a
value.

Just Finding if a Value Is In The Array

Suppose that we want to know if there is a 0 in our array of grades. If we just need to report
whether or not it is there at all, we could say

// mysterious method returns array with values

int[] grade = getGradeList();

// flag for whether we found a zero

boolean found = false;

for (int i = 0; i < grade.length; i++) {

 // check whether the current value is 0

 // if so, update the flag

 if (grade[i] == 0) {

 found = true;

 } // no else here!

}

// once we are done checking the whole array, report the result

if (found) {

 System.out.println("found a zero");

} else {

 System.out.println("no zeroes found");

}

We used a boolean called found to record whether or not we found a zero. Using a for loop
as usual, we checked each element of the array. If the current element was a zero, we
updated the found variable.

Notice that there is no else on the if inside the for loop. If the current element grade[i] is
zero, then we want to update our boolean to true. But if it isn’t, does that mean we should
do something else? Update the boolean to false? NO! If the current element isn’t zero,
that just means we haven’t found a zero so far. We still have the rest of the array to search.

In fact, adding an else that sets the boolean to false would be a disaster! If we haven’t
found our zero yet, then the boolean is still false, so setting it to false would be a waste of
time. But what if we found the zero, set found to true, and then looked at the next number,
which isn’t zero… we’d be setting it back from true to false and losing our information!

The only time we can reasonably have an else, to report whether it was there or not, is after
we have checked the entire array – after the for loop.

Note that, if we really are only interested in the first occurrence, or know that there is only
one, then we don’t actually need to keep searching once it is found. So we could adjust the
loop condition so that we stop once it is found.

// mysterious method returns array full of grades

int[] grade = getGradeList();

// flag for whether we found a zero

boolean found = false;

// goes through whole array but stops if found

for (int i = 0; i < grade.length && !found; i++) {

 // check whether the current value is 0

 // if so, update the flag

 if (grade[i] == 0) {

 found = true;

 } // no else here!

}

// once we are done checking the whole array, report the result

if (found) {

 System.out.println("found a zero");

} else {

 System.out.println("no zeroes found");

}

Finding the Location of a Value

Suppose we want to know where in the array a value occurs.

int[] grade = getGradeList();

// let the user choose a value to search for

System.out.println("What value to find?");

int seeking = scan.nextInt();

for (int i = 0; i < grade.length; i++) {

 if (grade[i] == seeking) {

 // i is the index in the array where we

 // found the value, report it if found

 System.out.println("found a " + seeking +

" at position " + i);

 }

}

In this case instead of just searching for zero, we made our code more general by getting a
value, seeking, to search for from the user. Our loop looks much the same, but this time we
said not just that we had found it, but the position in the array where we found it:, i.
Remember that i is a computer science number; if we are really going to print to a user, we
might want to print (i+1) instead. But actually, when searching for a location, we often want
to store that in a variable to use later in the program:

int[] grade = getGradeList();

System.out.println("What value to find?");

int seeking = scan.nextInt();

int foundAt = -1; // index position in the array

boolean found = false; // whether we found it

for (int i = 0; i < grade.length && !found; i++) {

 if (grade[i] == seeking) {

 foundAt = i; // store the position

 found = true; // store that we found it

 }

}

if (found) {

 System.out.println("found " + grade[foundAt] + " at " +

foundAt);

} else {

 System.out.println(seeking + " not found");

}

In this version, we used the foundAt variable to store the index where we found the seeking
value, so that it would be available after the for loop. We also used the found variable so
that we would know whether we found it or not.

Note that we started foundAt as -1. We’ll see why this is a good idea in a moment.

Finding Location and Recording Success in One Variable

It is much more common, instead of using both an int for position and a boolean, to just
use the int. We can simply set the int to an impossible value for an index to start with, and
if it still has that value after the loop ends, we know we must never have found the value.
The standard value to indicate something was not found is -1, since that is not a valid index
for any array:

int[] grade = getGradeList();

System.out.println("What value to find?");

int seeking = scan.nextInt();

int foundAt = -1; // position starts with impossible value

// for loop goes through whole array

// but stops early if foundAt ever changes

for (int i = 0; i < grade.length && foundAt == -1; i++) {

 if (grade[i] == seeking) {

 foundAt = i;

 }

}

// after loop, if foundAt is still -1 it was never changed

// so we never found it; if we did change it, it was found

if (foundAt != -1) {

 System.out.println("found " + grade[foundAt] + " at " +

foundAt);

} else {

 System.out.println(seeking + " not found");

}

We started foundAt as -1. If we found the value we were seeking, we changed it to the
current value of i. We can then use whether foundAt is still -1 both to help us end the for
loop early and to check after the loop whether we found it.

Parallel Arrays
Each array can only store one type of data; we can have an array of ints and separately an
array of strings, but one array can’t store both ints and strings. If we have multiple lists of
different types that are associated with each other, we can set them up as parallel arrays:
multiple arrays of the same length where we use the same index across all arrays to group
data.

Suppose that in addition to the array of grades, we have arrays of the first and last names of
the students with those grades. Since there are the same number of first names and last
names and grades, the arrays will be the same size, and we can use the same index to
indicate the same person, grouping their first name, last name, and grade. So if we say:

int[] grade = new int[10]; // grades of students

String[] fNames = new String[10]; // first names of students

String[] lNames = new String[10]; // last names of students

fNames[0] = "Jan"; // student #0’s first name

lNames[0] = "Smith"; // student #0’s last name

grade[0] = 85; // student #0’s grade

// all info about student #1, in three arrays

fNames[1] = "Gan";

lNames[1] = "Djones";

grade[1] = 90;

// Stan Melchizadek got a 99

fNames[2] = "Stan";

lNames[2] = "Melchizadek";

grade[2] = 99;

We are saying that there is a student whose name is Jan Smith whose grade is 85 – since all
those values are at position 0 in their respective arrays, they go together. Similarly, Gan
Djones got a 90 and Stan Melchizadek got a 99. You could think of the parallel arrays as
each being a column in a table, and each index indicating a row in that table with all the
information about a student.

Since parallel arrays must be the same size, we can use a single for loop to go through
them all at the same time:

// use special initialization to create parallel arrays

int[] grade = {85, 90, 99, 80, 73};

String[] fNames = {"Jan", "Gan", "Stan", "Nan", "Ann"};

String[] lNames = {"Smith", "Djones", "Melchizadek", "Brown",

"Whitley"};

// for loop can go through all three arrays at once

// since they are lined up and all the same size

for (int i = 0; i < grade.length; i = i + 1) {

 System.out.println(fNames[i] + " " + lNames[i] + " has " +

grade[i]);

}

If we search one array to find the position of a value, we can use the index we found to look
up the related information in the parallel arrays. For instance, if we look up the last name of
a student we can find the matching first name and grade.

// assuming we set up the three arrays already

System.out.println("Look up what surname?");

String lookFor = scan.nextLine();

int foundAt = -1;

for (int i = 0; i < lNames.length; i++) {

 // finding the location of the last name

 if (lNames[i].equals(lookFor)) {

 foundAt = i;

 }

}

// whichever position we found the last name,

// the matching first name and grade will be at

// the same position, in the other arrays

if (foundAt != -1) {

 System.out.println(fNames[foundAt] + " " + lNames[foundAt] +

" has grade " + grade[foundAt]);

} else {

 System.out.println("No such student");

}

Parallel arrays do rely on carefully maintaining the size and locations of data. If one of our
arrays has data in the wrong order, everything breaks. Creating a class that has instance
variables for each type and then having a single array of such objects will usually be better
than relying on parallel arrays. Parallel arrays can be more efficient in some situations,
however, and are great for practicing array code.

Arrays with FirstEmpty
Arrays are a static sized data structure, which means that we have to choose the size of the
array when we create it, and we cannot change the size later, we can only make a new array
of a different size, and copy the data into the new one. (Don’t forget, like variables based on
classes, array variables are references, they only hold the address of the actual array object
on the heap, so we could keep the same array variable and set it to the memory address of
a larger array, but that isn’t the same as changing the size of the existing array object.)

For this reason, we often create an array larger than the data we start with and then add
values to it as the program runs; if we don’t know how much data we will be dealing with,
we will usually err on the side of making the array too large, because wasting some space is
better than wasting a lot of time copying elements from one array to another.

Suppose we have an array that is already partially full, and a new value has just come in.
We want to store the new value in the array, but not at a position where we have already
stored a previous value.

One option would be to loop through the array until we find an empty spot… but there are
several reasons this is a bad idea.

First: how do we know whether a spot is empty? If the array started with default values
such as 0, false, or null, we could check for those, but false is certainly a valid possible
value for a boolean array element, 0 is often valid for a number, and null could well be valid
for any other type. We are back to the problem we had with sentinel values: this only works
if there is some value that is not valid data.

But second: even if we do have some value we can use to indicate empty spots, looping
through the array to find the first such spot every time we want to add is an enormous
waste of time.

When we measure the time for a program to do a task, we measure not in terms of seconds
elapsed, but based on how the number of steps is related to how much data there is:
Suppose we are working with 10 data values in our array. Each time we search the array we
have to look at on average (1/2)*10 items, and we have to do this 10 times, so
(1/2)*1000*1000. If it were 1000 values, it would be (1/2)*1000*1000. So in general, if we
are faced with n values, we have to do (1/2)*n2.

We usually ignore the constant coefficient at the front: whether we are actually doing 18
lines of code to process each value, or just 3 lines, that number *(1/2) gets dwarfed by the
number of values. So we ignore the (1/2) and just simplify this down to saying: doing it this
way costs n2 steps. That’s not great if n is 10. That’s catastrophic if n is 1000.

Especially when I tell you that we can get the same result in just n steps, if we use just one
extra int-worth of space!

We will keep an int variable like a sort of bookmark for the first spot in the array that is not
currently occupied: the first empty index. We often call this variable something like
firstEmpty or firstEmptyIndex or fei. Since array indices are always ints, it is always an int.

Suppose we are getting names from the user, and filling an array using a firstEmpty.

// the array so far, partially full

String[] nameList = new String[100];

nameList[0] = “Abe”;

nameList[1] = “Bea”;

nameList[3] = “Cam”;

nameList[4] = “Deb”;

nameList[5] = “Eve”;

// the firstEmpty so far

int firstEmpty = 6;

final String QUIT = "QUIT";

System.out.println("what name? " + QUIT + " to quit");

String username = scan.nextLine();

// while the user doesn’t quit

// and there is still space in the array

while (!username.equals(QUIT) && firstEmpty < nameList.length) {

 // put the new name at the current first empty spot

 nameList[firstEmpty] = username;

 // update firstEmpty so next name goes at next spot

 firstEmpty = firstEmpty + 1;

 // get nextname from the user

 System.out.println("what name? " + QUIT + " to quit");

 username = scan.nextLine();

}

// if we ran out of space,

// let the user know that’s why we quit

if (firstEmpty >= nameList.length) {

 System.out.println("ran out of space");

}

The heart of this code is just putting the user name at the firstEmpty index in the array, and
then incrementing the firstEmpty index, since that spot in the array isn’t empty anymore.

In this case, we wanted to read multiple names, so we did use a while loop, but notice this
is one of those rare cases when solving a problem with an array does not need a for loop!

 If we had been searching for the first empty spot, instead of using an int to keep track of it,
doing that would have needed a for loop nested inside the while, which would have taken
the very slow n2 time.

Notice that we did check each time whether the firstEmpty had fallen off the end of the
array by checking it against the array’s size. If we run out of space, then we either have to
give up, or create a new, larger array, copy all the elements from the old array into the new,
and continue from there (this is slow! So staring with an oversized array is smart.).

We put these values into the array because we have some use for them. If we need to
process the values in our array we need to go through all of them, and that brings us back to
using a for loop, but when we have an array with a firstEmpty, we don’t usually want to
process the whole array because there are probably a bunch of empty spots at the end of
the array that we don’t want to include in whatever process we are doing. So, the for loop
for dealing with an array that has a firstEmpty has a condition that compares the counter to
the firstEmpty, not to the size of the array:

// print the students in the array

// but not the empty spots at the end

for (int i = 0; i < firstEmpty; i++) {

 System.out.println("Student #" + (i + 1) + ". " +

nameList[i]);

}

Copying and Resizing Arrays
To copy an array, we must make a new array of the same size, and copy each element

// mystery method creates the original array

String[] original = getOriginalArray();

// the new array to copy into

// same size as original

String[] destination = new String[original.length];

// these arrays function like parallel arrays

// so we can use one loop to go through them

for (int i = 0; i < original.length; i++) {

 destination[i] = original[i];

}

If we planned poorly and ran out of room in our array, we can’t make the array bigger so we
need to make a new, larger array and copy all the elements over. One good guideline is to
make the new array at least twice the size of the old.

// the original array

String[] original = getOriginalArray();

// the new array to copy into

// twice the size of original

String[] destination = new String[2 * original.length];

// still just one loop, but we must use

// the smaller size, we are not filling up the

// larger array, just leaving the rest of it empty

for (int i = 0; i < original.length; i++) {

 destination[i] = original[i];

}

// if we did this because we ran out of space, but need to

// continue working with the “same” array, we might as well

// move the new array’s address into that old variable

original = destination;

Notice that if we were doing this for an array with a firstEmpty, the firstEmpty doesn’t need
to change. If it reached the size of the original array, that’s okay, because that’s now a valid
index in the new bigger destination array and we can go on adding to it.

Object Arrays
As usual in Java, we can combine any tools we have, and we just need to remember to
apply all the rules of both. We can have an array of any type valid for variables, and we can
use classes to create types for variables, so we can have an array of any type we have made
a class for.

When we create an array of a class type, as always all the elements start as the default
value for variables of that type, null. So we will need to use new more than once: we use

new with square braces to set up the array, and we also use new with parentheses to create
individual instances of the class whose memory addresses are stored in the array.

Let’s assume we have a Dog class with instance variables for name and number of sticks,
and the ability to bark. For the moment, all this will be public in Dog (we know better than
this for instance variables, but it will help simplify the initial example).

// array of dogs variable – no array, no dogs yet 1
Dog[] dogList; 2
// create array, all elements null, no dogs yet 3
dogList = new Dog[10]; 4
// create an actual dog, address located in the array 5
dogList[0] = new Dog(); 6
// use the dog variable in the array 7
dogList[0].name = “Spot”; 8
dogList[0].sticksFetched = 3; 9
dogList[0].bark(); 10

In line 2 we have declared the variable dogList, whose type is array of Dogs, but we have
used new 0 times, so there is not even an array yet, and certainly no Dog objects. At that
point memory looks like

variable MM value
 [stackframe: main (args)]
args 50 null
dogList 51 no value
 …

In line 4 we use new with square braces, and this creates the array object on the heap,
which is a list of Dog variables each of which could hold the address of an actual Dog
object, but they are all null at this point. Now memory looks like:

variable MM value
 [stackframe: main (args)]
args 50 null
dogList 51 MM100
 …

[heap]

Index: 0 100 null
1 101 null
2 102 null
3 103 null

4 104 null
5 105 null
6 106 null
7 107 null
8 108 null
9 109 null

length 110 10
 …

In line 6 we use new with parens to create an actual Dog object, and put the memory
address of that Dog object into the 0th row in the array. Now memory looks like:

variable MM value
 [stackframe: main (args)]
args 50 null
dogList 51 MM100
 …

[heap]

Index: 0 100 MM200
1 101 null
2 102 null
3 103 null
4 104 null
5 105 null
6 106 null
7 107 null
8 108 null
9 109 null

length 110 10
 …
 200 name: null

sticksFetched: 0
…

 …

The rest of the code is affecting that Dog object, using the variable name dogList[0]. Again,
this may feel like a weird variable name at first, but it is just a variable, so we can use the
dot operator on it like any other Dog variables. By the end of the code, memory looks like:

variable MM value
 [stackframe: main (args)]
args 50 null
dogList 51 MM100
 …

[heap]
Index: 0 100 MM200

1 101 null
2 102 null
3 103 null
4 104 null
5 105 null
6 106 null
7 107 null
8 108 null
9 109 null

length 110 10
 …
 200 name: “Fluffy”

sticksFetched: 3
…

 …

Object Array Special Initialization

Since object arrays are arrays, we can use special initialization on them just like other
arrays. We could do this by first creating the objects in individual variables and then putting
them into the array, but it would be more standard just to create the objects in the special
initialization.

// assuming a parameterized constructor in Dog

// create individual Dogs (probably a waste of time

// unless we will also need these variables for individual

// use)

Dog d1 = new Dog(“Muffy”, 1); // Dog has param constructor

Dog d2 = new Dog(“Fluffy”, 20);

Dog d3 = new Dog(“Clyde”, 300);

// put the addresses from the individual variables

// into the array

Dog[] list1 = new Dog[]{d1, d2, d3};

// more normal way to do it: just create the Dog objects

// as part of special initialization

Dog[] list2 = new Dog[] { new Dog (“Spot”, 44),

 new Dog(“Rover”, 55),

 new Dog(“Mr. Dog”, 66) };

Object Array Instance Variables

Since object arrays are variables, they can be instance variables inside other objects. Here
is a class that has instance variables for arrays of objects:

public class Zoo {

 private String zooName;

 public Penguin[] penguins;

 public Lion[] lions;

 public Zebra[] zebras;

 public Zoo() {

 setZooName(“Generic Zoo”);

 // we have space for 10 penguins

 penguins = new Penguin[10];

 // we start with one penguin

 penguins[0] = new Penguin(“Willie”);

 // we have space for 5 lions

 lions = new Lion[5];

 // but we didn’t get any lions yet

 // we don’t yet have space for any zebras by default

 // but we might set up the zebra array later

 }

}

In this class representing a zoo, we have three instance variables arrays of objects based
on classes representing penguins, lions, and zebras. The default constructor sets up the
array of penguins and adds one actual penguin, sets up the space for lions, but does not
set up the space for zebras by default. We know better, but I made the variables public to
make it easier to see what’s going on in this example.

In main we could now say

Zoo tinyZoo = new Zoo();

As a result of this line, the default constructor runs, setting up a lot on the heap!

variable MM value
 [stackframe: main (args)]
args 50 null
tinyZoo 51 MM100

 …

[heap]

 MM100 zooName null
 “Generic Zoo”
penguins null
 MM200
lions null
 MM400
zebras null

 …

Index: 0 200 MM300
1 201 null
2 202 null
3 303 null

 …
9 105 null

length 110 10
 …
 300 penguinName null

 “Willie”
…

 …
Index: 0 400 null

1 401 null
2 401 null
3 403 null
4 404 null

length 405 5

Because we made the instance vars public, we could say things like this in main:

Zoo tinyZoo = new Zoo();

tinyZoo.setName(“The Tiny Zoo”);

// give them a lion

tinyZoo.lions[0] = new Lion(“Simba”);

// set up space for and give the zoo three Zebras

tinyZoo.zebras = new Zebra[] { new Zebra(), new Zebra(),

newZebra()};

Make sure you understand why tinyZoo.lions[0] is valid but tinyZoo[0] is not. The tinyZoo
variable contains an array, but it is not an array itself.

Arrays of Objects that Contain Arrays

We can just continue combining components of Java: we can have an array of any type, and
a class containing an array of something is a valid type, so we can create an array of objects
each of which contains an array of objects (each of which could contain an array of
objects, etc, etc.

Continuing with the Zoo class, we could say in main:

// a single tiny zoo

// assume parameterized constructor that takes name

// and chains to default

Zoo tinyZoo = new Zoo(“The Tiny Zoo”);

// an array that can hold the addresses of multiple zoos

Zoo[] zooFederation = new Zoo[10];

// put the tiny zoo’s address into the array of zoos

zooFederation[0] = tinyZoo;

// add another zoo to the federation

zooFederation[1] = new Zoo(“Baltimore Zoo”):

zooFederation[2] = new Zoo(“National Zoo”);

zooFederation[3] = new Zoo(“Salisbury Zoo”);

// … code for 96 other zoos

// … code that sets up their animals

// let’s look at all the lions

for (int i = 0; i < zooFederation.length; i++) {

 if (zooFederation[i].lions != null) {

 for (int j = 0; i < zooFederation[i].lions.length; j++);

 if (zooFederation[i].lions[j] != null) {

 // print the lion

 System.out.println(zooFederation[i].lions[j]);

 // have the lion roar

zooFederation[i].lions[j].roar();

 }

 }

 }

}

So we have an array of zoos, each of which contains an array of Lions (which may or may
not be null, and may or may not contain addresses of actual lion objects). We have nested
for loops, one to go through the array of zoos, and one that for each zoo goes through the
array of lions in that zoo (checking for nulls along the way).

Make sure you understand why zooFederation[i].lions[j].roar() is valid but
zooFederation[i].lions.roar() or zooFederation[i]. [j].roar() or zooFederation.roar() are not.
The zooFederation variable stores the address of an array of zoos, each element of which
has an instance variable that stores the address of an array of lions, each element of which
stores the address of a lion that can roar. The array of lions isn’t a lion that can roar, and
neither is the array of zoos, and we can’t put the dot operator between subscripts, that’s
just a syntax error7.

7 Two square braces side by side can be valid syntax. Since arrays are a valid type for variables, and we can
have an array of any valid type, we can have an array of arrays – an array whose elements hold the memory
addresses of other arrays. We will cover these multidimensional arrays in Java II.

