Encapsulation

In object oriented design, we divide our program into classes representing components of
the situation, using instance variables to store all the data we need to know about that
component, and methods that store the behaviors and actions related to that component.
The different classes can interact, but are separate, meaning that everything we need for
one component of the situation is stored in one class. This is called encapsulation.

We have some standard tools that every class with instance variables should have that
support clean encapsulation. If a class has instance variables, it must also have methods
called accessors, mutators, and constructors (we already know it should have toString).

In addition to helping us design large scale programs by making the structure of the code
reflect our conceptual understanding of the situation in the program, object orientation
helps programmers be lazier in actually implementing and maintaining code.

Encapsulation means classes can be implemented independent of each other. This
allows different programming teams to work in parallel on different classes. It also means
that we can pull classes out of one program and copy them into another program without
having to re-write from scratch. And it means that when we later have to update or change
the code in one class, those changes can be made without having to update all the code in
the other classes.

But to get these benefits from object orientation, we have to follow rules for good object
oriented design, and this means separating a class’ interface from its implementation.

Interface vs Implementation

When creating a class, we should clearly distinguish between the public interface of the
class, which consists of the parts of the class that the rest of the program can interact with,
and the private implementation which is the parts of the class that are not available to the
rest of the program, the parts that make the interface work.

The public interface for a class should be part of the initial design, and defines the parts of
the class that other classes may need to use in their code - this is the way other classes
can be written to be ready to interact with this class while the class is still being written. In
general, the public interface of a class consists of a list of methods, some of which will
return data values for the characteristics (instance variables).

Itis important that once a method is put into the public interface, it should not be changed
—not the name, not the return type, not the parameters. Also we cannot remove methods

from the interface. By putting something into the public interface, we are promising that it
is a tool that other classes can freely use, so changing any of this would break another
class’ code (which will probably enrage our programming peers!).

Any part of the class thatis in the private implementation can be changed as needed to
improve the code, fix errors, add new abilities, or meet the demands of management.

We can always go into methods and change their bodies to change how they work, which
means we can fix problems, make code more efficient, or improve readability without
messing up other classes that call those methods. Method bodies are automatically part
of the private implementation just because of how methods work.

The private implementation usually also includes all instance variables, and it may include
some methods that are not appropriate for use outside the class.

Hiding instance variables in the private implementation gives each class control of those
variables’ values, so no class from the outside can set them to inappropriate values. It
does also allow us to completely hide the value and even existence of an instance variable
that needs to be hidden from the rest of the program for privacy or security reasons.

Java gives us the keywords public and private to explicitly say which parts of the class are in
the public interface vs the private implementation.

// class Account

public class Account {
public String name; // public (just for this example)
private double balance; // private (correct)

// a public method that controls access
// to a private variable
public void deposit(double d) {
// don’t allow negative values
if (d > 0) {
balance = balance + d;

// main method
public static void main(String[] args) {
Account act = new Account();

// name is currently public, so can be changed from outside
// that'’s probably a bad idea

act.name = "Johann Dowe";
act.name = "stupid customer I hate him";
act.name = "";

// error, cannot access private
// from outside class

act.balance = -1;

// legal, use the public method
act.deposit(10);

Accessors and Mutators

Since instance variables are almost always private, it is standard to provide tools that allow
outside classes to interact with them in a controlled way. In general, for each instance
variable, we would provide a method to access the value of the variable, and a method to
try to change the value of the variable.

The method to get access to the value is called an accessor or getter because the method
is usually given a name that puts “get’” in front of the name of the variable. Accessors are
almost always very simple: just return the value of the variable.

The method to change the value is called a mutator or setter because the method is usually
given a name that puts “set” in front of the name of the variable. Mutators need a
parameter of the right type for the variable. At simplest they would simply put that value
into the variable, but they might also include an if to check the value of the parameter.

// class Job

public class Job {
// monthly salary for this job
private double salary;

" An alternative standard for accessors uses is in front of the variable name just for boolean variables, so it
might be isHungry() orisTall(). Thisis a little more common than the standard we are using, and is
fine for you to use; to keep things simpler | am sticking with get for all types.

// accessor
public double getSalary() {
return salary;

// mutator
public void setSalary(double newval) {
if (newval >= 0) {
salary = newval;

public static void main(String[] args) {
Job myJob = new Job();
myJob.setSalary(2700);
System.out.println("you got a 1% raise");

// new salary is 101% of the old salary
myJob.setSalary(myJob.getSalary() * 1.01);

// no effect if we try to set it to a bad value
myJob.setSalary(-300);

System.out.println("Your salary is: $" + myJob.getSalary());
}

Notice that when putting get and set in front of the instance variable name to create the
names of accessors and mutators, we always camel-case the variable name. Since the
accessor needs to return the instance variable’s value, its return type is always the same
name as the type of the variable. Since the mutator’s job is to set the value of the instance
variable based on the parameter, the parameter type is always the same as the instance

variable.

public type getMyVar ()

private type myVar

public void setMyVar (type newValue)

Mutators often need to validate the value going into the instance variable, so that it never
gets set to an inappropriate value. To do this, they include an if that checks that the value of
the parameter (not the instance variable itself) is good, so that the instance variable is only
changed if the parameter value is good. However, they do not use an else for bad values?.

Mutators do not print errors if they are given a bad value! A print-outis a message to the
user, but we don’t know whether the value passed in to the mutator came directly from the
user, it might have come from a file, or been generated by other code in the program. We
would say that the mutator is a back-end tool, one whose job is to interact with the rest of
the program, but not to interact with the user. We absolutely might have other methods
that do talk to the user (front-end) and make similar checks and tell the user if their input is
bad, but then those methods should still use the mutator. The mutator is the last line of
defense for the instance variable if a bad value gets through every other part of the code.

Also, mutators do not set the instance variable back to some other value if they are
given a bad value. Suppose in a Bank class we have an instance variable balance, and the
mutator does not allow negative values. If your current balance is 2000.00, and some part
of the program tries to setitto -1.00, do you want the mutator to punish the program for the
bad value by throwing away the 2000.00 and setting your balance to 0.00? No. If we have a
good value currently, we should hold onto that good value until we are asked to change it to
another acceptable value.

When given bad values, mutators just silently do nothing.

2There is an alternative standard for mutators that returns a boolean and returns false if given a bad value,
but the standard we are using is far more common.

Accessors and Mutators are another example of a standardized way of writing Java code
that Java programmers have agreed on even though it they are not built into the syntax of
the language. By using the same approach in every Java class, we make sure that neither
ourselves or other programmers ever have to spend any mental effort on thinking about
what tools like this should be called or how they should work.

At first, adding accessors and mutators for every instance variable may feel like extra work,
but actually it is an example of being lazy in a programmer way: we write these very simple
methods in a standard way when we create the program, and this helps insure us against
having to do complex, difficult updating of a class later on.

Suppose the Job class in the example above was part of a larger program that you had to
maintain. After the program had been in use for a year or so, management tells you that the
program now needs to do everything in terms of yearly salary (maybe because there was
ambiguity about which type of salary, maybe for legal reasons, maybe just because of
management whim).

So we add a new yearlySalary variable with its own accessor and mutator, but we know we
can’tremove the old accessor and mutator for the old salary variable — putting them into
the public interface meant we promised they would always be available.

If every part of the program that had to access the salary went through that accessor and
mutator, then if we just rewrite the bodies of the old accessor and mutator for the old salary
variable to use the new yearlySalary variable, we shouldn’t have to make changes to any
other code to meet the management’s requirements.

// class Job

public class Job {
private—double—salarys
private double yearlySalary;

// old mutator, rewritten for new implementation
public double getSalary() {
return getYearlySalary() / 12;

// old accessor, rewritten for new implementation
public void setSalary(double newval) {
if (newval >= 0) {

setYearlySalary(newval * 12);

// new accessor for new implementation
public double getYearlySalary() {
return yearlySalary;

// new mutator for new implementation
public void setYearlySalary(double newval) {
if (newval >= 0) {
yearlySalary = newval;

}

Notice that in the code above, the old salary accessor and mutator are passing values on to
the new yearlySalary accessor and mutator. We’re future-proofing again. If next yearwe
have to swap yearlySalary for something else, we will only have to update the yearlySalary
accessor and mutator.

Constructors

When we create an object based on a class type, we use the new operator, followed by the
name of the class with parens on the end. We also know that most things followed by
parens are methods. And indeed, we are calling a method in lines like

Dog spot = new Dog(); // calling constructor method

This method is called the constructor, and its job is to set up the instance variables for the
object.

We know that instance variables, unlike local variables, have default values (0, false, or
null) but for most classes, we would like to start the instance variables as different values.
Technically we could do this where we declare the instance variables for simple literal
values, but standard Java style is to do this in the constructor.

The name of the constructor (as we can see when using new) is always the same as the
name of the class. It has no return type, and cannot be called by using its name other than
by using new.

public class Dog {
private String name;
private int age;

// constructor
public Dog() {
// okay
// name = “unnamed doggy”;

// age = 1;

// better
setName (“unnamed doggy”);
setAge(1l);

// accessors, mutators (no 0 or negative age), toString..

// in main
Dog d = new Dog()// d starts with “unnamed doggy” and 1
Dog(); // error - cannot call without new

In the default constructor, it is okay to assign values to instance variables directly using =,
but itis almost always better to use the mutator®. Then there is one fewer line of code to
change if we have to change that instance variable later as discussed earlier. The only
strong reason to use direct assignment instead is in the unusual case where an instance
variable can start as a value that it cannot then be changed back to later, then we can
assign it directly in the constructor, but the mutator can keep it from ever being changed
back once it has been changed to a different value.

To see what instance variables start as, Java programmers are used to looking at the
constructor. So even if our class does want to use the universal defaults (0, false, null) we
might explicitly set an instance variable to that value in the constructor to make it clear that
we didn’t forget to set it, we actually want that value.

Classes can actually have extra constructors to make it quicker to assemble a new
instance of the class and set instance variables at the same time. These are often called

3 NetBeans will mark this with a warning. Remember that you can usually ignore warnings. For once, thisis a
meaningful message, but one outside the scope of what we’ve talked about so far.

parameterized constructors, because they use parameters to allow passing in values,
while the constructor without parameters is called the default constructor or no-
parameter constructor.

public class Dog {
private String name;
private int age;

// default constructor

public Dog() {
setName (“unnamed doggy”);
setAge(1l);

// parameterized constructor.. missing something
public Dog(String nameVal, int ageVal) {
setName(nameVal);
setAge(ageval);
}

// accessors, mutators (no 0 or negative age), toString..

// in main

Dog d = new Dog()// d starts with “unnamed doggy” and 1
d.setName(“Spot);

d.setAge(4);

Dog d2 = new Dog(“Fluffy”, 3) // d starts with “Fluffy” and 3

Now, instead of creating a Dog with the default values and then using mutators to set the
instance vars, if we know the values we want when we create the Dog, we can do all of that
in one line. If a class had dozens of instance variables, providing a parameterized
constructor could make your main code much shorter and easier to write; taking the time
to write a good parameterized constructor is a good example of programmer laziness — put
in the time to write a few lines of constructor once to save many lines of main code later.

4 Other backgrounds use “default constructor” to refer to the invisible constructor that does nothing.

Notice that the parameterized constructor definitely needs to use the mutators, since we
can’t control what values are going to be passed in as arguments, so we need to make sure
the mutators get to check the values.

But if the value passed to the parameterized constructor is invalid, in the code above, the
instance variable would end up with the general default value (0, false, null). What if that
value is also invalid for that variable in our class? We need to make sure that instance
variables start with valid values, before we try to set them to the values given as
parameters.

We know that the default constructor will set instance variables to valid values, so what we
would like to do is call the default constructor, but we know we can’t call it by name without
new, and calling it with new would be creating another Dog. So there is special syntax to

call one constructor from another —a new usage of this. One constructor can call another

constructor in its first line by using this () this is called chaining constructors.

public class Dog {
private String name;
private int age;

// default constructor

public Dog() {
setName (“unnamed doggy”);
setAge(1l);

// parameterized constructor, corrected

public Dog(String nameVal, int agevVal) {
this(); // call default constructor
setName(nameVvVal);
setAge(ageVal);

}

// accessors, mutators (no 0 or negative age), toString..

// in main

Dog d = new Dog()// d starts with “unnamed doggy” and 1
d.setName(“Spot);

d.setAge(4);

Dog d2 = new Dog(“Fluffy”, 3) // d2 starts with “Fluffy” and 3

Dog d3 = new Dog(“Muffy”, -10) // d3 starts with “Muffy” and 1

Now, every dog starts with the values from the default constructor, and then the
parameterized constructor tries to change it from there, but the mutator might stop an
invalid value from getting through.

We can have multiple parameterized constructors in a class as long as the parameter lists
are different in number and/or types of parameters. Choosing parameterized constructors
is part of the design of a class, you should provide parameterized constructors to cover the
common cases for what instance variable values are likely to be known when an object is
created.

Suppose that half the time we know all the information for a Dog when it is created, but a
significant portion of the time we just know the name. Then we might have

public class Dog {
private String name;
private int age;

// default constructor

public Dog() {
setName (“unnamed doggy”);
setAge(l);

// parameterized constructor, just name
public Dog(String nameVal) {
this(); // chain back to default
setName (nameVal);

// parameterized constructor, name and age

public Dog(String nameVal, int ageVal) {
this(nameval); // chain back to name-only
setAge(ageVal);

}

// accessors, mutators (no 0 or negative age), toString..

// in main

Dog d = new Dog()// d starts with “unnamed doggy” and 1
d.setName(“Spot);

d.setAge(4);

Dog d2 = new Dog(“Fluffy”, 3) // d2 starts with “Fluffy” and 3
Dog d3 = new Dog(“Muffy”) // d3 starts with “Muffy” and 1

Notice that now the 2-parameter constructor calls the 1-parameter constructor which calls
the default constructor. They are linked like a chain, which is why itis known as chaining
constructors.

If you think about the code we have written previously, you might ask the obvious question:
we haven’t been writing constructors, and yet we’ve been calling constructors. Even if we
haven’t written a constructor in the Dog class, we could still say

Dog d = new Dog();

So what constructor is that code calling? If you create no constructors in your code, Java
provides an invisible constructor that just does nothing. As soon as you do write at least
one constructor yourself, Java does not do this. This means that if you write a
parameterized constructor but no default, then your class just doesn’t have a default
constructor —you can’t create an instance of your class at all without providing values up
front.

public class Dog {
private String name;
private int age;

// parameterized constructor, just name
public Dog(String nameVal) {
setName (nameVal);

// parameterized constructor, name and age

public Dog(String nameVal, int ageVal) {
this(nameval); // chain back to name-only
setAge(ageVal);

}

// accessors, mutators (no 0 or negative age), toString..

// in main

Dog d = new Dog()// error - no default dog can be created!

Dog d2 = new Dog(“Fluffy”, 3) // d2 starts with “Fluffy” and 3
Dog d3 = new Dog(“Muffy”) // d3 starts with “Muffy” and 1

This can be used in the rare case where in the process of designing a class we realize you
should never be able to create an instance without certain up-front values. Forinstance,
we might decide that a bank account cannot be created without the name and ID number
of the owner of the account.

