
Conditionals
Conditionals will allow our programs to make choices rather than always doing exactly the
same sequence of statements. The most common conditional is if, which can be used to
choose whether or not to do a sequence of statements in the code, and is sometimes used
with else, to choose between doing one or the other of two sequences. A conditional will
check a boolean value and do one thing if the value is true, something else (possibly
nothing) if the value is false.

Booleans
The boolean type to is used to store data about whether something is true or false. Under
the hood, we can use a single binary bit to store off/on to represent 0/1 or false/true.

We will write the possible literal values of booleans as false and true.

In some cases, we would create a boolean variable and set its value directly to establish
whether something is true

boolean dogCanFly = true // magic dog, yay!

boolean movie_is_scary = false

However, it is very common for booleans to get their values from expressions instead of
being directly set like this.

Booleans only have the two possible values true and false, which are opposites. To talk
about opposites, we say "NOT" which is often written with an exclamation point. So NOT
true is false and NOT false is true, usually written as !true == false and !false == true. ! is an
example of a logical operator, an operator that can act on the value of a boolean.

Boolean Expressions – Relational Operators
A boolean expression is an expression that is evaluated and comes out as a single true or
false value. Boolean expressions are usually written using relational operators to check for
equality, greater than, less than, etc. We can also combine multiple boolean values in
more complex expressions.

A relational operator is used in an expression between two values of the same type, and
this expression evaluates to either true or false. Our standard relational operators are

operator Called true when
a == b “equals equals” a and b hold same value
a != b “not equals” a and b hold different values

a > b “greater than” a holds a larger value than b
a < b “less than” a holds a smaller value than b
a >= b “greater than or equal

to”
a holds a value larger or same as b

a <= b “less than or equal to” a holds a value smaller or same as b

Note that each expression has an opposite – our NOT again -- which is true when it is false
and false when it is true. We even incorporate the exclamation point into the syntax: a == b
is true when a != b is false and false when it is true. The opposite of a > b is a <= b and the
opposite of a < b is a >= b.

If
the if structure uses a boolean to determine whether or not to execute a sequence of
statements in code. An if is always looking for its boolean to be true. Our syntax of If looks
like

if (boolean condition) {

 // code to do only if the condition is true

}

We are using curly braces to delineate the beginnings and endings of structures in our
pseudocode. The part inside the curly braces is called the body of the if, which we often
casually call “in the if.” In the body of the if you could put any code that you could have
anywhere else in a method – create variables, do operations, print, whatever.

The condition in the parens of the if must evaluate to a boolean value. In the case that
boolean comes out true, we will run all statements inside the body of the if. But when the
boolean comes out false, we will skip all of that and jump to the next statement after the
end curly of the if. Booleans have no third options.

We could represent this if with the flowchart:

The condition in the parentheses of the if could be a single boolean variable, but is most
often a boolean expression.

For example, if we already have variables for whether a submission was late, for a fee, and
for a current balance, and we are deducting a fee from the balance as a penalty for late
submissions, we could say:

if (submissionLate) {

 print("Late Penalty: $" + fee)

 funds = funds – fee

}

Either the submission was late or not, so submissionLate is either true or false. If it is true,
we will print a message and deduct the fee, otherwise we will skip those statements and go
on with whatever is next in the program.

Another example: if we already have variables ponyPrice and funds, and we want to
celebrate buying a pony and pay for it if our funds are high enough to afford the pony’s
price, we could write

if (ponyPrice <= funds) {

 print("Buying a pony yay!")

 funds = funds – ponyPrice;

statements to do no
matter what

boolean
condition?

statements to do if the
boolean condition was

true

statements to do no
matter what

true

false

}

Either the ponyPrice is less than or equal to our current funds, or not, so this expression will
evaluate to either true or false. If true, we will print and subtract the price from the fund, if
false, the program will skip those two statements.

If by itself is appropriate in the case when we have a sequence of steps that we either want
to do or skip. This commonly happens if we have code that we want to do, but some
requirement needs to be met (we have enough money to buy a pony) or if we have code that
we only have to do if there is some problem (make the user pay a fee if their submission is
late).

If always looks for its condition to be true. We can adjust how we write the condition to fit
with this. Suppose instead of imposing a fee for late submissions, we want to celebrate
those that aren’t late. We can use our logical operator NOT to adjust for this, to check for
the opposite of lateness being true:

if (! submissionLate) {

 print("Thank you for submitting on time!”)

}

If Else

In many cases when our programs make choices, we arent just choosing whether or not to
do something, we instead have two options, and we want to do one or the other. In that
case we would pair the if with an else. Now we will have one sequence of statements in the
if, and another sequence of statement in the else.

The else is always checking the same condition as the if, but while the if is checking for
true, the else is always checking for false. Since any boolean expression will always come
out to one or the other, either the if or the else will win. Whichever one wins, we do those
statements and skip the others. We would never have else without if.

if (condition) {

//statements to do if the condition is true

//“body of the if”

} else {

 // statements to do if the condition is false

 // “body of the else”

}

Notice that since the else is just a partner to the if, we usually write it right on the same line
as the end curly of the if.

To visualize this:

Let’s decide that if we cannot afford a pony, we will go to work to make more money. We
might say something like

if (ponyPrice <= funds) {

 print("Buying a pony yay!")

 funds = funds – ponyPrice

} else {

 print(“No pony today! Back to work.”)

 funds = funds + wages

}

Now, if the condition comes out true we will do the two lines in the if, but skip the else, and
if the condition comes out false, we will skip the two lines inside the if and do the else
instead.

If always checks for true and else always checks for false, so we could always change the
condition and do them in the other order:

if (ponyPrice > funds) {

 print(“No pony today! Back to work.”)

 funds = funds + wages

} else {

statements to do no
matter what

boolean
condition?

statements to do if the
boolean condition was

true

statements to do no
matter what

true false

statements to do if the
boolean condition was

false

 print("Buying a pony yay!")

 funds = funds – ponyPrice

}

This has exactly the same result as the previous, since we swapped the condition to the
opposite, but also swapped contents of the if and else bodies.

We often choose to write if-else with what we think is the more likely, or preferable, case in
the if position.

Common Errors

When students are first learning conditionals, they often think they always need a
relational operator, even when working with something that is already a boolean, so they
stick in == true. Although this doesn’t cause an error in most languages, it’s pointless,
adding an extra step for no reason.

// suppose we already have ints x and y and boolean b1 and b2

// extra step:

if ((x == y) == true)

// correct:

if (x == y) {

print(“Same ints”)

}

//extra step:

if (b1 == true)

//correct:

if (b1) {

 print(“yes b1”)

}

// extra step:

if ((b1 == b2) == true)

// correct:

if (b1 == b2) {

print(“Same bools”)

}

Having an == false in a condition is also not an error, but it is generally not how a
programmer would write the code, they would use ! instead.

// suppose we already have ints x and y and boolean b1 and b2

// awkward:

if ((x == y) == false)

// correct:

if (x != y) {

print(“Different ints”)

}

// awkward:

if (b1 == false)

// correct

if (!b1) {

 print(“no b1”)

}

// awkward:

if ((b1 == b2) == false)

// correct

if (b1 != b2) {

print(“Different bools”)

}

When we only have one option, then we only need if without else (it’s an error to try to have
else without if). This is right even if the thing we’re checking for is something we think of as
false.

// suppose we already have ints x and y and boolean b1 and b2

// NO! don’t use else with empty if!

if (x < y) {

} else {

print(“x not less”)

}

// YES, one option, just if

// could also write condition as (x >= y)

if (! (x < y)) {

print(“x not less”)

}

In our pseudocode, as in many real languages, we use one equals sign for assignment, but
two equals signs to check equality. Watch out for accidentally making a typo here; in some
languages, it is technically legal to put an assignment inside the condition of an if, as long
as it is assigning a boolean variable, but this not what we wanted!

// suppose b1 and b2 are booleans

// single = is assignment, not checking equality

if (b1 = b2) {

print(“oops!”)

}

If this is legal, it is not checking whether b1 and b2 are the same, it is changing b1 to be the
same as b2!

Nesting Conditionals
We can have any code inside the body of a conditional (if or else) that we would have
anywhere else in code, including more conditionals, so we could have an if-else inside an
if or an if inside an else (remember that we never have an else without an if). This allows us
to say that we will only check for something in the case that we have already checked for
something else.

Here is an example that covers checking all combinations of two conditions.

if (first_condition) {

 //statements here only depend on first being true

 if (second_condition) {

 // do if both are true

 } else {

 // do if first is true but second is false

 }

// statements here only depend on first being true

} else {

 // statements here only depend on first being false

 if (second_condition) {

 // do if first is false but second is true

 } else {

 //do if both are false

 }

//statements here only depend on first being false

}

Notice that there is only one structure checking first_condition, which we would call the
“big if-else” or the “outer if-else” but there are two separate structures checking
second_condition, which we might call the “small if-elses” or “inner if-elses”. Also notice
that there is space here for code that is inside the body of the big if-else but not inside the
small if-else, where we can put code that only depends on the first condition.

else if
It is very common to have a series of possible conditions or values we need to check, with a
different behavior for each. We would check for the first one, then if that fails check the
next, and so on. In that case, we could write a deep nesting of if-else structures:

if (first_condition) {

 //behavior for first condition

} else {

 if (second_condition) {

 //behavior for second condition

 } else {

 if (third_condition) {

 //behavior for third condition

 } else {

 //behavior if none of those conditions holds

 }

 }

}

This works, but writing it in this way implies that the first condition is the most important,
and each subsequent condition is less important or less likely. If they are simply a set of
equally important and likely options, we would usually simplify the code by writing an else
with an if immediately after it, on the same line:

if (first_condition) {

 //behavior for first condition

} else if (second_condition) {

 //behavior for second condition

} else if (third_condition) {

 // behavior for third condition

} else {

 // behavior if none of those conditions holds

}

This visually implies that while we chose to check first-condition first, these options are
roughly at the same level or importance or likelihood. It is also shorter and most people
find it easier to read.

Notice that this example ends with an else, not a last if. So if none of the conditions we
checked for holds, we will do the else.

If instead we ended with an else + if, then there would be the possibility that we would do
nothing at all for this code, if nothing including that last if’s condition turned out true.
Sometimes that is what we want

if (x < 10) {

 print(“negative or one digit number”)

} else if (x < 100) {

 print(“two digit number”)

} else if (x < 1000) {

 print(“three digit number”)

}

// when x is >= 1000 we just don’t do anything

If the conditions are totally separate issues we are checking for, then ending in an else-if
makes sense if we know that sometimes none of those situations holds so we have no
actions to take. If the conditions are related and together cover all possibilities, we almost
certainly want to end with an else which covers the last possibility.

Case / Switch Statement
When we have a list of mutually exclusive situations that depend on specific values of a
single variable, we have a special conditional structure called a case, or switch statement.
In a case statement, we say which variable we are checking, and then list out some values,
and then the code that we want to execute for each value, until we have listed them all,
possibly with an extra case for default, to cover all other possible values, and then close
with endcase.

case variableName {

value1 : statements to do if variableName has value1

value2 : statements to do if variableName has value2

value3 : statements to do if variableName has value3

default: statements to do for all other values of

variableName

}

In this pseudocode, we are assuming that whichever value we match, we would run only
the statements for that value, and then the case statement would end and go on with the
rest of the program, in the same way that if we run the body of an if, we then skip the else.

In many languages, there is a version of the case statement with fallthrough. This is
sometimes called switch, although “case” and “switch” are also often used
interchangeably. Fallthrough means that we use a special keyword, usually break, at the
end of each case to end the structure there, but otherwise we fall through from the code for
that value and continue with the code for the following values.

switch variableName {

value1 : statements to do if variableName has value1

value2 : statements to do if variableName has value2

 but also do these after the code for value1

 break

value3 : statements to do if variableName has value3

default: statements to do for all other values of

variableName

 but also do this after the code for value3

 break

}

Since there was no break after the value1 case, after we were finished with the statements
for value1 we would continue with those for value2; however value2 has a break, so after

that we would stop and leave the switch. Since there is no break after value3, for that value
we would do the value3 specific code, but then continue on to do the code in the default
case. Since the default case is at the end, we would stop and leave the switch then
anyway, but it is common to still put a last break it not make this explicit (and in some
languages this is required).

Case statements were very common in programs that had menus where the user was given
a list of options and entered a number to choose what they wanted to do. We could do a
case statement based on the variable we read in from the user and put each behavior next
to the value the user entered, plus have the default case to tell them if they entered an
invalid answer. This kind of program is much less common now except in kiosk situations
like gas pumps, but case statements are still useful if we have a limited list of values and a
behavior for each.

Notice that we cannot use case statements to handle ranges of values. if we have the
same behavior for all values from 1 to 10, we would have to type an individual case for each
one. in such situations, it would be easier to use if-elseif instead. If we really need the
fallthrough of a switch for some reason, but we start off with ranges, we could use if-elseif
to set a new variable to one of a list of values, and then use that to enter the switch.

Boolean Expressions – Logical Operators
We use logical operators to combine multiple booleans, for instance requiring that two
booleans are true at the same time.

Our standard logical operators are

 operator called true when
!p NOT p is false
a && b AND both a and b are true
a || b OR a is true or b is true or both are true

We use NOT to swap between true and false. NOT in front of a false value comes out true,
and NOT in front of a true value comes out false.

We use AND when we want two things to be true at the same time. We use OR when we
need at least one of two things to be true.

These operators give us the ability to combine multiple requirements that we want to
check, all in a single boolean expression.

Truth tables are one way of seeing the behavior of an expression with logical operators. A
truth table lays out a row for each possible combination of the individual booleans involved
and then shows how the whole expression comes out. Here is the truth table for NOT

a ! a
true false
false true

Since NOT only acts on one boolean, it is a very small table, just showing that the outcome
of using a NOT is the opposite of the value started with.

Here is the truth table for &&:

a b a && b
false false false
false true false
true false false
true true true

The table shows that an && expression is false in every case except where both elements
are true at the same time.

Here is the truth table for ||:

a b a || b
false false false
false true true
true false true
true true true

The table shows than an || expression is true in every case except where both elements are
false.

if (age >=0 && age < 18) {

 print(“child ticket”)

} else if (x < 65) {

 print(“adult ticket”)

} else if (x < 150) {

 print(“senior discount”);

} else { // means x is in none of the above categories

 print(“invalid age, check ID”)

}

We earlier had code to check for all combinations of two conditions. If we want to check
for two conditions at the same time, we could also use our logical operators. Here is code
to check for all possible combinations of two booleans, using if-else-if structure:

if (first_condition && second_condition) {

 print("both are true")

} else if (first_condition) {

 print("first is true, second is false")

} else if (second_condition) {

 print("first is false, second is true")

} else {

 print("both false")

}

Note that we didn’t have to check for first_condition AND NOT second_condition for the
case where first is true and second is false: if both were true, we would have stopped in the
first if, so we know at least one is false when we get to the first else-if. So if we check
first_condition and it is true, then it must have been second_condition that was false.
Same holds for the second else-if. The last else doesn’t need to check for them both being
false; again, if we know we are covering all possible cases, we can just end with an else to
cover the only case we haven’t checked yet. So this would be silly and redundant:

if (condition1) {

 if (condition1 && condition2) {

 print("both are true")

 } else if (condition1 && !condition2){

 print("first is true, second is false")

}

} else if (!condition1){

if (!condition1 && condition2) {

 print("first is false, second is true")

} else if (!condition1 && !condition2){

 print("both false")

}

}

So that means this would be equally silly and redundant.

if (age >=0 && age < 18) {

 print(“child ticket”)

} else if (age >= 18 && x < 65) {

 print(“adult ticket”)

} else if (x >= 65 && x < 150) {

 print(“senior discount”)

} else if (x < 0 || x >= 150) {

 print(“invalid age, check ID”)

}

deMorgan’s Laws

When writing longer boolean expressions it is important to know how these operators
interact. The most important rules are deMorgan’s laws about the interaction between !
and && and ||. The overall guideline is that a NOT in front of another operator can be
distributed to each operand, and then swaps the operators between && and ||.

So,

! (a && b)

is the same as

(! a || ! b).

This should make sense if you think about ! meaning the opposite: the opposite of “both of
these are true” is “at least one of these are false.”

Similarly,

! (a || b)

is the same as

(! a && ! b).

This should also make sense: the opposite of “at least one of these is true” is “both of these
are false”

deMorgan’s laws are often useful when you can easily describe the situation you don’t
want, but you are using a tool like an if that checks its condition for true, so we need to
write accordingly.

If I have actions to do, but I can’t do them if it is above 90 degrees and there are any
raccoons present, I might think of it as (temp > 90 && raccoon_count >0) but actually, I
want to check not for this bad case, but for the opposite. So the good case is

! (temp > 90 && raccoon_count >0)

We can re-write this using deMorgan’s laws as

! (temp > 90) || ! (raccoon_count >0)

If we think about how relational operators work, the opposite of > is <=, so this can also
become

temp <= 90 || raccoon_count <= 0

Note that all of these ways of writing the condition are legal and valid. We should choose
the one that most clearly expresses the way we are thinking about the situation.

