
Basic Programming Concepts 

Hardware and Software 
A working computer needs both hardware – the physical components – and software – the 
programs that tell the hardware what to do. 

The most essential parts of the hardware we need are processing and storage.  For the 
computer to be usable, we also need input and output – ways for humans to communicate 
with the computer.   

The Central Processing Unit (CPU) of a computer has electronics set up to perform 
operations such as arithmetic and logic, as well as other tasks; people often think of the 
CPU as the “brain” of the computer.   

The primary storage for running programs is the Main Memory (MM)1; it stores the data and 
instructions of the current task.  Since the computer is an electronic device, the simplest 
way to store things in the computer is to have a circuit that either does or does not have 
electric power.  Power off represents storing a 0 and power on represents storing a 1.  To 
store numbers larger than 1 we need to go to multiple digits.  A line of these circuits in a row 
is called a binary pattern; everything in the computer is stored as a binary pattern. 

A program consists of a list of instructions and data.  Instructions are the binary patterns 
we use to represent the operations we have built into the electronics of the CPU.  Data is 
anything else – other than instructions -- stored in the process of doing a task in the 
computer.  Data includes anything the program starts with, anything read in (for instance 
from a user or a file), any interim values calculated, and any results.  

Since there are a limited number of binary patterns of a given length2 the same binary 
pattern may be re-used, sometimes as a number, sometimes as an instruction, sometimes 
as a character, sometimes as part of a color, etc.   

 
1 Main Memory (MM) is also called RAM, but RAM stands for “Random Access Memory,” and 

in a modern computer all storage is random access, so this is not a particularly meaningful 

name 
2 This length is the computer’s word size, for instance, a “64-bit computer” means that each 

row in MM can hold a 64-bit-long binary pattern, so there are 64 transistor/capacitor pairs 

there that may be charged (1) or uncharged (0).  The rest of the hardware, such as the 

busses that carry binary patterns from one part of the hardware to another, should match 

the word size.  Programs should be written taking the word size into account; if I try to 

 



Main memory can store millions of binary patterns, so we need some way to keep track of 
where things are.  Each row in memory that can store a pattern is numbered, and this 
number is called the Memory Address.  Getting a stored pattern  is called reading, changing 
a stored pattern is called writing. 

Memory 
Address 

Binary Pattern 

… … 

100 0000101011110000 

101 0101001101011001 

102 1010110100100111 

103 0110101000000010 

104 0000101011110000 

105 0000000000000000 

… … 

 

 

Getting data and instructions into the computer is input, and any results given back to a 
user is output.  Input and output generally require converting between some other format 
and binary patterns. 

 
write a machine language program using binary patterns that are 128 bits long on a 

computer whose word size is only 64, it would not work.  

(Actually, we could make it work by doing everything in two steps, processing the first half 

of a 128-bit pattern from one row in a 64-bit MM and the second half from the next row.  

Similarly, we could store two 32-bit patterns on a row in a 64-bit MM and process only the 

first half of the row then only the second half.  This kind of workaround usually slows things 

down a lot, but may be worth doing in certain circumstances.  Most people find working with 

nitty-gritty hardware details like this boring, and want to just write high-level programs; if 

figuring out how to do this sort of thing does sound exciting and interesting to you, take our 

assembly language programming course!) 

 



Programs 

Machine Language Programs 

The machine language of a computer is the list of all the instructions this computer’s CPU 
can perform.   

If we look at a real, running program in MM, we would just see a list of binary patterns.   

Inside the CPU we need a little bit of storage for the current instruction and the data we are 
working on right at this moment.  Storage areas in the CPU are called registers.  There is one 
instruction register and several data registers.   

The Arithmetic Logic Unit (ALU) of a CPU can generally do basic 
arithmetic on binary numbers, and also logical operations such as 
checking equality -- whether two binary patterns are the same.   

At the level of machine language, we have to break down what we 
want the program to do into things we were able to figure out how to 
build electronic circuits to do, which is a fairly simple list of options. 

This means that the work of a programmer is all about figuring out 
how to solve a problem -- write a program to do a task -- by combining 
a list of fairly simple tools.  For instance, historically many CPUs had 
circuits to do adding, but building in multiplication was too complex 
and expensive, so if your program involved multiplication, you would 
have to write your program to add over and over to achieve that result. 

The CPU can move data around in MM and between MM and the data 
registers.  It does also need to be able to interact with the rest of the 

hardware, so that we can save files to or from a hard drive, or show images on a screen, or 
send data over a network, but all of these basically boil down to moving data around, and 
the CPU has instructions for this. 

A program will usually consist of millions and millions of instructions, so the CPU needs a 
way to keep track of which instruction it is on while a program runs.  The Program Counter 
(PC) is the component of the CPU that keeps track of the Memory Address of the current 
instruction; it automatically updates by one after each instruction is completed, so if the 
CPU has just completed the instruction at Memory Address MM99 it will next do the 
instruction at MM100.  

A human would expect that the step after 99 is 100, but the CPU has to be built with 
hardware to make this happen because it is not a thinking person, it is just a mechanism.  



This is just one example of how much detailed work and thought has to go into designing a 
computer to complete tasks. 

To allow a program to have different behaviors depending on circumstances, such as 
performing one of two options, or repeating the same operation, the CPU has to have 
instructions that can change the Memory Address in the PC so that the next instruction 
executed is not the next numerically.  

For instance, if we have just done the instruction at Memory Address MM99 and we now 
need to repeat the last 9 instructions, the next instruction in the program might set the PC 
back to MM90, creating a loop.  And so that the CPU can eventually leave this loop, there 
would have to be the possibility that it will instead set it forward to jump elsewhere to do 
other instructions.   

Assembly Language 

Few programmers want to write code in binary.  

Although everything at the hardware level is in binary, even when we are talking about 
hardware most people find working in binary unnecessarily difficult.  Assembly language is 
a programming language that uses human-friendly codes that stand for machine language 
instructions, for example ADD for the instruction that tells the ALU to add binary numbers.  
Each statement in an assembly language program represents one machine language 
instruction. 

Note that assembly language programs would be stored in the computer using the binary 
for the letters and numbers in them, which are not the same as the binary for the 
instructions they represent3  So an assembly program cannot run; it would have to be 
translated to machine language first; a program can easily do this however, since 
translating assembly is just a matter of looking up each assembly code and replacing it 
with the equivalent machine language binary. 

There are actually various assembly languages for different types of CPU.  here I’ll use a 
very simplified version to give you an idea.  In most assembly, the code for the action, the 
operator,  comes before any data it acts on, called operands.  This style is called prefix 
notation.  You are probably more used to infix notation, which puts the action between two 
data elements.  So if my operator is ADD and my operands are 70 and 180: 

 
3 The binary to store “ADD R1 R2 R3” would consist of the binary pattern for A then the 

binary pattern for D (twice)  and then the binary pattern for a space and so on.  The actual 

instruction for this in machine language would be a single binary pattern with on’s in the 

positions to activate the right parts of the ALU to add, etc. and off’s elsewhere. 



Prefix style: ADD 70 180 

Infix style: 70 ADD 180 

Suppose we want the computer to add two numbers for us.  The Arithmetic Logic Unit in the 
CPU has logic gates wired up to combine the 0’s and 1’s of two binary numbers to achieve 
the right binary pattern for their sum.  So, to tell the ALU’s adder (component that does 
adding) to combine the binary pattern for 70 with the binary pattern for 180 we could start 
by saying: 

ADD 70 180 

But do you see why this isn’t enough?  This says to add the two numbers, but surely we did 
that because we wanted the result!  So we need to say something about where to put the 
result or what to do with it.   

Important principle: Always use the result of an operation.  You might store it for later, 
you might immediately do another operation on it, you might print it for the user to see, but 
you should never do an operation without doing something with the result!  If you don’t, that 
operation was a waste of time.   

So, the ADD instruction actually needs not two but three operands; the third is the location 
to put the result.  Main Memory is our storage for currently running programs, so we 
probably want to put our result in MM4 and we need to specify which row in MM to put it into 
so that we can find it again later to use.  We can specify the row in MM by putting MM in 
front of the memory address (the row number).  So 

ADD 70 180 MM105 

Says to add 70 and 180 and put the result in MM, on row 105.   

People often ask, “How does CPU know this means to add 7 and 18 and put the result in 
MM105, instead of adding 7 and 18 and the data in MM105 all three together?”  Well, first, 
the assembly language codes are just for our convenience; they have to be translated to 
machine language in order to run.  To make it easy to do that translation (and easy for us to 
write) we just always use the same order to mean the same thing.  

 But also remember that the CPU doesn’t know anything.  The CPU is a bunch of logic gates 
wired together in a specific way.  The actual machine language binary code for this 

 
4 A real ALU would get its data from and put its results into data registers.  So the data 

would have to first be loaded into data registers, and then the result would have to be 

copied from a data register back into MM.  Many modern computers could do several of 

these steps in one instruction. 



instruction has ons and offs in the right locations to send power down some wires and not 
others.  Some of those wires activate the parts of the ALU that does adding, some of those 
wires carry the numbers into that adding component to be added, and some of those wires 
activate the connections coming out of the ALU so that when the adder has resulted in a 
binary pattern, those ons and offs are sent to the right place to store the result. 

Actually a modern CPU has such a complex structure that just wiring its components 
directly from the instruction register is insufficient, and a secondary structure called the 
Control Unit just to decode instructions so that the right parts of the CPU are activated 
based on different types of instructions is required.  We would often say that the Control 
Unit “knows” or “figures out” what the instruction is telling the CPU to do, but actually, it is 
just another layer of mechanism that very clever people spent a lot of time and energy 
figuring out. 

There is no thinking and no knowledge going on in the CPU, the thinking is our job! 

But if thinking is our job, we probably think that this example seems like a silly thing to have 
the computer do.  We know what 70 + 180 is, so why have the CPU do this when we could 
just have put the binary pattern for 250 in MM on line 105 in the first place?  Instead of 
explicitly using those numbers, we probably want our program to use values that it might 
have read in from the user or a file, or calculated in previous steps.  So instead of the literal 
values 70 and 180, we want to use stored data.  When we are writing hardware programs, 
we use the memory locations where those values are stored.  So now our statement might 
look like 

ADD MM103 MM104 MM105 

This says to add whatever data is currently stored in MM on row 103 to whatever data is 
currently stored in MM on row 104, and put the result back in MM on row 105.  Since the 
values on row 103 and 104 might be different each time this ADD instruction runs, we could 
call MM103 and MM104 variables – they are representations of data that can vary instead of 
specific values that are always the same.  

Important principle: Instead of using literal values, use variables.  Using literal values 
limits what your program can do; using variables makes your code more flexible.  Only use 
a literal value if you’re sure that part of the program’s behavior should never change.  

Now, it might be that MM103 is the row in MM where I stored the data I read in from a file 
representing the company’s bonus per commission and MM104 stores the data I read in 
from the user representing their base commission on a sale, so the result is their total.  The 
statement ADD MM103 MM104 MM105 has the right outcome, but we have to remember 



what it means.  One thing a high level language gives us that makes it easier to use than 
assembly is named variables. 

 

The Instruction Cycle 

To run a program, the computer must do all the instructions in the program.  The process of 
doing a single instruction in a program is called an instruction cycle. The Instruction Cycle 
is a four-stage process that the CPU repeats over and over.  The stages are: Fetch, Decode, 
Execute, and Update.  Since this is a cycle, after each Update the CPU continues on to the 
next Fetch. 

The purpose of the cycle is to complete an instruction.  The Execute stage is where the 
instruction is actually carried out.  During Fetch and Decode, the CPU prepares for 
Execute, and during Update, it prepares for the next cycle. 

In fact, the instruction cycle is the only thing the CPU ever does, from the time the 
computer is turned on until it is turned off.  The CPU doesn’t even know about programs.  It 
simply does the Instruction Cycle process over and over again. 

For a program to run, its instructions and data must be stored in Main Memory, and the 
Program Counter must be set to the Main Memory address of the first instruction.  Then the 
CPU does the instruction cycle over and over for all the instructions in the program.  

Fetch 

The CPU can only execute an instruction that is in the instruction register.  So the first 
stage, Fetch, is to copy the instruction to the IR.  But with potentially millions of 
instructions in MM, how does the CPU know which one to fetch?  This is the purpose of the 
Program Counter.  The PC holds the MM address of the next instruction to fetch. 

So, during Fetch, the address from the PC is sent to MM, which sends back whatever 
instruction is at that address.  This instruction is copied into the IR.  Now the CPU has the 
instruction but it cannot act on it yet. 

Decode 

Once the binary pattern is in the IR, the CPU can set up to actually do the instruction.  The 
ons and offs in the binary pattern activate some parts of the CPU and deactivate others in 
preparation to carry out the right task.  In a modern CPU, the Control Unit deals with 
breaking up the parts of an instruction to activate and deactivate the correct parts of the 
instruction. 



If the binary pattern copied to the IR turns out not to have been a valid instruction, the CPU 
must deal with the error. Generally, it would change the program counter so that the next 
instruction to be run will be the first step in the program that handles such an error.  

Execute 

Finally the CPU can do what the instruction says.  What happens during Execute depends 
on the instruction.  For some instructions, the ALU will be performing mathematical 
operations, for others, data will be copied over the bus, for others, the PC will be changed, 
or a request will be sent to the HD or... etc. etc. 

The CPU does not check whether the instruction makes any sense from a human point of 
view.  As long as the instruction is one of the ones built into the CPU, it simply does what it 
is told. 

Update 

Once the instruction has been executed, we are done with it.  But we want the CPU to 
continue on to the next instruction in the program when we do the next cycle.  If the CPU 
returned to Fetch immediately after Execute, it would be fetching the same instruction it 
just did! 

During the Update stage, the CPU adds one to whatever value is in the Program Counter, so 
that on the next Fetch it can do the next instruction waiting in Main Memory.  

This happens no matter what.  The CPU can’t see what’s in Main Memory, so even if there 
isn’t a valid instruction at the next MM address, the CPU will still update the address by 1.  
This also means that if we want our program to change the PC to jump to some other point 
in a program, or some other program entirely, we’d have to have our instruction set the 
address to one less than where we want to end up, because the following Update will add 1 
to whatever address we choose.  

High Level Languages 

Assembly Language gets us out of having to write code in machine language, but at the 
hardware level we still have to break down our programming tasks into tiny pieces like 
adding two binary numbers, moving a binary number around in the hardware, and changing 
the Program Counter.  It is important to understand that all real programs do work this way!  
But few programmers are interested in having to think about all the hardware details such 
as Memory Addresses, or to break tasks into such tiny pieces. 

Most programmers choose to work in a High Level Programming Language instead.  These 
languages hide hardware details and give us more convenient tools to make programming 



tasks easier. Examples of high-level languages are C, C++, C#, Python, Javascript, Visual 
Basic, Perl, Lisp, and Java. 

Different high level languages provide different tools and have different rules for how the 
code is written.  We would expect most languages to provide  

• tools for storing data 
o individual values: named variables with types 
o lists of values: arrays 

• tools for doing arithmetic and logical operations 
• control structures for affecting the order of instructions (changing the program 

counter) 
o conditionals: choosing between options 
o loops: repeating steps 

• methods: a means of organizing part of a larger program into a named, re-usable 
component  

• tools for input and output 
• documentation tools, particularly comments – a means of adding notes to a 

program to make it more readable for programmers without affecting how the 
program runs 

From these basic components, we can build programs to do complex tasks.  High level 
languages may also give us more sophisticated tools for organizing our programs and 
controlling how data and actions are related, or lower-level tools that do allow us to use 
hardware details when they are helpful for problem-solving.   

Java, for instance, is an extremely popular language because it provides a balance between 
ease of use and powerful tools.  Other high level languages have advantages in one 
direction or another, for instance C++ is in many senses more powerful, but with the trade-
off that many people find it more difficult to use. 

Just like an assembly language program,  a program in any high level language cannot run!  
The CPU can only run programs in machine language.  Having to translate from high level to 
machine language ourselves would be annoying, especially since one line in a high-level 
language might be translated into dozens, hundreds, or thousands of machine language 
binary instructions. So we have programs to do this translation, but the task is much harder 
than in assembly, where each code is just a stand-in for a specific machine language code.   

To make it possible to translate a high level language program, we must have simple, 
unambiguous rules for how to write programs in the language, rules simple enough that we 



can write the translation program.  The rules of spelling, punctuation, grammar, vocabulary, 
etc, for a programming language are called the syntax.   

It is very important for programmers to be able to learn the syntax of a real language this; 
someone who can’t bring themselves to care about the details of the syntax of a 
programming language will struggle with programming!  In this course, we will learn a little 
bit of the syntax of the Java language so that we can write programs that can run; it is hard 
to learn programming concepts if you cannot experiment with them and watch how they 
work. 

  

Compile and Interpret 

There are two standard ways to translate from a high level language program to a machine 
language program that can run: compiling and interpreting. Any language could be either 
compiled or interpreted, but creators of a language tend to choose one approach or the 
other depending on which better matches their goals and all programs for that language are 
either compiled or interpreted. 

For compiled languages, the original high level language program is given to the compiler 
program, which translates the whole of the program to machine language and saves this 
translation in a file called an executable.  The executable is then given to the user, who can 
run it over and over again. 

For interpreted languages, when the user wants to run the program, they give the original 
high level language program to the interpreter program, which translates it a little bit at a 
time while running it, every time it runs. 



 

Note that the user would never need to have the compiler for a program written in a 
compiled language, only the programmer needs it; the user can run the program they’re 
interested in without needing an additional translation program.  For an interpreted 
language, the programmer would still need to have the interpreter, to test their program, but 
the user needs this extra program as well.  

Since all the translation has been done before the program is run, programs in compiled 
languages run faster than programs in interpreted languages, which have to be translated 
while they are run every time they run. 

So far, all the advantages seem to be on the side of compiled language.   

To understand the advantages of interpreted languages, consider that different types of 
computer have different machine languages.  A Mac will not understand instructions for a 
Windows machine, and vice versa. 

So, when we compile a program, we are compiling it for a specific type of computer.  If we 
compile a program for a Windows machine, that executable will not work on a Mac5.  
However, if the program is in an interpreted language, then as long as the user has the 
interpreter on their computer, it will interpret into the correct language for the computer 

 
5 Executables can sometimes be run on a different type of computer than they were 

compiled for, using a program called an emulator.  The emulator is essentially acting like an 

interpreter, but instead of translating from a high level language to machine language as 

the program runs, it translates from one machine language to another. 



they have.  This makes interpreted programs very portable, making them suitable for use in 
web pages which will be used by people on many different types of computer. 

 

   

So, if a program is written in a compiled language, it will be our responsibility as 
programmers to compile different versions for different types of computer.  This could take 
extra work, if there are details of working with a specific operating system that must be 
dealt with.  In the case of interpreted languages, we only need to rely on users getting 
access to the interpreter on their own computer. 



 

It is also true that because the compiler has to finish translating the whole program before 
we have an executable that can run, sometimes programmers prefer interpreted languages 
for creating simple tools for immediate tasks because they could avoid waiting through a 
long compilation process before they could test their program.  However modern 
compilation can usually be done very fast for small-scale programs in such situations.   

It also used to be that compiled programs were always much, much faster than 
interpreted, but now interpreted programs in some languages are almost as fast as 
compiled6. 

Historically, Java was an interpreted language, and during this time had a reputation for 
being slow for this reason.  However, Java has since continued its tendency towards trying 
for balance by becoming one of the few languages that is both compiled and interpreted! A 
compile step translates the program from complex high-level language to hardware level 
instructions in a format of Java’s own, which is saved to a file; this intermediate format is 
translated to the actual machine language for a specific machine at run time.  So the most 
time consuming part of the translation is done ahead, for speed, but translation is still done 
at runtime for portability. 

 
6 Now many ‘interpreted’ languages in fact take a hybrid approach, in which the slowest part 

of the translation work is done through compilation into an intermediate form, which can 

then be very quickly translated to the machine language of a specific kind of machine. 



In this course, we will learn the fundamental ideas of programs and programming, but Java 
is an example of how in the real world, our tools are often complex and take advantage of 
multiple of the ideas we talk about. 

Pseudocode 

Sometimes we want to describe step by step what a program does before actually writing 
the code in a high level language.  Maybe we don’t want to have to think about the 
limitations of a real language while we’re solving problems, maybe we need to figure out 
the needs of a program before we can choose what language to work in, or maybe we’re 
just trying to explain a conceptual process.  

A pseudocode is a structured, formalized way of writing down what a program will do, step 
by step.  It has syntax rules, like a high level language, but is usually less specific and 
formal, and more descriptive and human-friendly.  We will use a pseudocode for many 
examples and assignments. 

An advantage of working in pseudocode is that you don’t have so many fiddly syntax details 
to worry about, in some cases parts of pseudocode might just look like a text description, 
as long as it describes in an  unambiguous way what the program should do.  A big 
disadvantage is that you can’t then run your pseudocode to check whether the process it 
describes actually works! 

The Process of Programming 
We often think of the process of writing a program as solving a problem – finding a way to 
get from some input to some desired output.   

We could think of the steps in creating a program as 

• Requirements 
• Design 
• Coding 
• Translation 
• Debugging / Testing 
• Deployment 
• Maintenance 

There are also many other ways we could reasonably break this process down.  

 Modern models of programming always assume that we will do a certain amount of 
looping back:  When testing, we will certainly find errors that will at least require going back 
to the coding phase and then working forward again, but some errors might reveal that our 



original design was flawed and has to be re-done, or even that we have to go back and 
revise our requirements to resolve a conflict or ambiguity.  If we are luckier, we might realize 
problems with the design or requirements during coding and backtrack at that point.   

Once we are in the maintenance phase, we might at any time have the requirements 
updated, or have to revisit coding or design because of a technical issue such as a library of 
someone else’s code that we relied on no longer being available.  

Never expect that your journey through the programming process will be a straight line from 
start to end.  In fact, never assume that the process of dealing with any program will 
necessarily have an end until that program is no longer in use by anyone. 

Requirements. 

You may sometimes have your own personal  programming project where you define what 
the program should do, but most of the time you should expect to be creating a program to 
meet someone else’s needs.    

Programmers are experts in writing programs, but they spend most of their lives doing this 
in the context of someone else's area of expertise.  If you are writing a program for a 
chemist or an urban planner, you need to find out from them not only what the input and 
output look like and any formal calculations involved, but also vocabulary, best practices, 
processes, and so on used in their field.  

People sometimes refer to “Engineer’s Disease” which is the assumption that if you are 
smart enough to become an expert in your field then you are automatically an expert in 
every field. This might result in ignoring important elements of a situation because you 
don’t see why they matter, or changing the order of steps because it seems more 
convenient to you.  This leads to terrible programs that make people’s lives materially 
worse.  Watch out for this: you’ll be the expert in writing programs, but you need to talk to 
an expert in the field your program is for, and you need to respect their expertise. 

So, the first part of creating a program takes careful communication and negotiation to 
determine what the program needs to do and how it should work.  A formal description of 
what the program is supposed to do is called the requirements. 

Design 

In the creation of a real program, the coding is the easy part.  Learning enough about 
someone else’s field to create useful requirements is possibly the hardest.  But what takes 
the most time and thought is program design, thinking through how you will use 
programming tools, what data structures you need, how to divide up the program among 
programmers, and so on.  



There are many known approaches in programming to addressing common types of 
situation.  There are many sophisticated data structures for when we need to store lots of 
data but something as simple as a list does not support our needs, for instance  when we 
need to be able to very quickly store many values in sorted order so that we can search 
through them.  Algorithms are known sequences of steps for solving recurring problems 
such as how to find the closest pair of points in a large set, or how to plan a path that 
passes through every one of a set of points. 

There are various overall design methods.  One of the most popular is Object Orientation,  
an approach to designing a program which results in programs that are easier to write, 
easier to update, and easier to maintain.  Object orientation divides the situation in a 
program into types of components that interact with each other, and identifies the 
characteristics and behaviors for each type of component that the program needs to 
represent 

Design Patterns are a collection of known solutions to common problems in program 
design, sort of like blueprints for common ways to set up parts of the program.  

We should, as part of design, put thought into which programming language is appropriate, 
based on their strengths, and which tools such as libraries of existing code and program 
editing and testing tools we will use. 

In this course we will eventually talk about object orientation, and a little bit about data 
structures and algorithms, but for the most part we will be focused on learning the very 
basic tools for how programs work and I will be making many of the design decisions for the 
programs you will write, based more on helping you practice skills than on the absolute 
most efficient or elegant way to solve a problem. 

Coding 

When you are first learning to program, you will mostly be focused on how to use new tools.  
Eventually you will internalize these and be able to easily recognize when and how to use 
them.  Writing the actual lines of a program using the syntax of a particular programming 
language is coding. 

In most cases, there are multiple ways to write code to achieve the same result.  Even 
aside from the names we choose for our structures and how we document our programs, 
we can use how we write our code to communicate how we are thinking about a problem: 
saying “if the printing queue length is under 5, print the document” and “if the printing 
queue length is not 5 or over, print the document” have the same result, but imply different 
ways of thinking about the situation.  You will also find that just as in writing text, people 
have different styles of writing code, and by the end of the semester you may begin to 



recognize the difference between your style and another student’s even just in 
pseudocode.  There isn’t just one right answer. 

Translation 

When all the code of a program has been written, we use a compiler or interpreter to 
translate it into machine language so it can run, but these can only translate if the program 
was written following the syntax of the language exactly.  If words were misspelled, or 
punctuation left out, or words were in the wrong order, then the translation program will not 
know how to translate that code.  Instead, it will report a syntax error.   

So we may spend some time going back and forth, re-writing the code to fix the syntax error 
and then trying to translate again.  In many cases, we may work in an Integrated 
Development Environment (IDE), a programming tool that usually provides an editor and 
other tools to help with programming, and this may check syntax constantly while we are 
writing code, in a similar way to a word processor that checks spelling and grammar as you 
write an essay. 

Debugging / Testing 

When all the syntax errors have been fixed, the program can run, and now we are ready to 
test the code.  A logic error (also known as a bug7) means that the program runs, but does 
not meet all the requirements.  This may mean that it freezes up, that it gets the wrong 
results, or that it simply does not do one of the things the requirements said it should.   

Fixing logic errors may be as simple as fixing a typo (e.g., the program added where it 
should have subtracted) or may require going back and re-designing, then writing the code 
again.  Any changes made in this process may have added new syntax errors, which have to 
be eliminated before we can run the program again... and find new logic errors. 

For a large and complex program, the job of testing for and eliminating logic errors takes 
many passes through this process. 

Just as you may have found that when editing your own essays you miss errors that other 
readers see immediately, it is common for a programmer to miss problems with their own 
program, because they know how it is supposed to work.  For this reason, we often start 

 
7 Rear Admiral Grace Murray Hopper, who worked on the first compilers, once discovered 

that a moth in the hardware of an early computer was causing a fault.  Calling a logic error 

a “bug” has a lot of the hallmarks of  computer scientist humor: it uses a cutesy, misleading 

name, it implies that the problem with a program isn’t the fault of our code (when it 

absolutely is), and it is a very, very old in-joke. 



with a list of formal test cases based on the requirements, to make sure that we have 
tested the important aspects.   

In real production code, a beta tester tests out the program before it is released, and tries 
to find bugs the programmers missed.  Good beta testers are good at thinking up bizarre 
things to try, to see if they can get the program to go wrong by doing things the programmer 
never expected. 

Just being told there is something wrong with a program is not terribly useful.  Details are 
important, so good beta testers are also good at telling the programmers exactly what they 
did — including what type of computer they were working on, what other programs were 
running, and step by step what actions they took—and at telling the programmers exactly 
what went wrong: what error messages they saw and whether the program froze up or 
suddenly closed or made the whole computer reboot. 

Beta testing is the phase when the programmers think the program has all the features it 
should, but still has bugs to get rid of.  Some companies also have an alpha testing phase.  
Alpha testing means that the program is not finished, there is still more to add, but the 
partial program can be run, enough that it can start being tested.  

Some beta testers are just average users who agree to beta (or alpha) test a program, 
generally in exchange for early access to the program.  Professional beta testers have a 
background in a computing field, which gives them the understanding and vocabulary to 
give better reports on bugs to guide the programmer to find and fix the causes more quickly, 
but these professionals expect to be paid! 

Deploying and Maintaining 

After a certain amount of testing, we will hit the date by which we have to release the 
program for use, whereon users will inevitably find more errors.  They will also expect the 
program to keep working in the long term, and often want the program to be updated with 
new abilities.  Most programmers spend most of their careers maintaining existing code, 
not writing code from scratch.   

Lazy Coding and Comments 
One way to think about our ideals as programmers is that we want to be as lazy as possible.  
Part of this is just about writing programs in the first place: a well designed program can 
take over a task to make people’s lives easier.  But there are also many principles in the 
practice of programming that are about being lazier.  In general: we  want to focus our 
problem-solving efforts on the actual programming and avoid wasting mental energy on 
other things. 



Even if you are maintaining code that you wrote in its entirety, you will probably find that you 
don’t remember every detail of how you solved all the problems, why you used the tools 
you did, and what you had to fix and adjust two years ago when you added a new capability 
to your code. It is far more likely that you will be maintaining code written by others. 

We tend to think of documentation as a help for users, but they are also a way to 
externalize our understanding of the program so we don’t have to remember it.  Comments 
are notes in the body of the program itself.  Good comments can make it much easier to 
maintain code written by someone else, or your former self.   

Even if you are writing a fairly short and simple program, you will probably find that it is 
difficult to remember every detail of your design as you are writing.  Most real programs are 
so large and complex that you will only be working on a part, while other programmers work 
on other parts, and nobody should be expected to remember the entire design. 

There are various design approaches for breaking down a large complex program into 
smaller pieces to make it manageable.  Methods are a fundamental tool for breaking down 
a complex process into subtasks.   Object orientation is a common approach to dividing a 
program into modular parts that can be programmed separately by different teams but still 
work together. 

Overall, many of the practices I will encourage in this course will take a little more work up 
front (like writing a few brief comments into your code) in order to save time and mental 
effort later. 

Hello World 
By tradition, when learning to program your first program in a new language is called “Hello 
World” because it is a program that just prints the words “Hello World” to prove that you 
can write a program that runs and does anything at all.   

In our pseudocode, a Hello World program might just look like 

print(“Hello World”) 

A  method is a unit in the structure of a program representing the steps to do a task.  Each 
method has a name, which should clearly communicate what the method does; we call a 
method using its name to indicate that the steps in the method should run at that point in 
the program, without listing out all those steps right there.   

Printing output on a screen is a complex process, so we’ll assume in our pseudocode that 
we always have a method called print that knows how to do those steps, and we’ll call print 
whenever we want those steps to happen.   



We need to tell the print method exactly what we want to see printed.   

Method names are followed by parentheses. This is how we get data from our program into 
a method.  You can think of the parentheses as the mouth of the method.  We are feeding 
“Hello World” as input data to the print method to tell it that the thing it should print is 
“Hello World”. 

We use double quotes around text to surround string literals, that is literal strings of text 
that are data in our programs, not names of some part of how the program works.  A string 
literal should be able to hold anything we want to print.  So print() is the method, but 
“print()” would be a literal string with the letters p, r, i, n, t, (, and ) inside it. 

Hello World in our pseudocode was just one line long.  Here’s what a Hello World might 
look like in the Java language: 

public class SaysHello { 

 public static void main(String[] args){ 

  System.out.println("Hello World"); 

 } 

} 

The rules of Java would also require that this be stored in a file named SaysHello.java. 

So you can see that when we just want to explain a process, it might be a lot easier to work 
in pseudocode and not take into account all the extra details a particular language 
requires.  However, you could pop this Java code into a Java compiler and see it run.  
Pseudocode will never be able to do that. 

  


