Basic Programming Concepts

Hardware and Software

A working computer needs both hardware - the physical components — and software —the
programs that tell the hardware what to do.

The most essential parts of the hardware we need are processing and storage. For the
computer to be usable, we also need input and output — ways for humans to communicate
with the computer.

The Central Processing Unit (CPU) of a computer has electronics set up to perform
operations such as arithmetic and logic, as well as other tasks; people often think of the
CPU as the “brain” of the computer.

The primary storage for running programs is the Main Memory (MM)'; it stores the data and
instructions of the current task. Since the computer is an electronic device, the simplest
way to store things in the computer is to have a circuit that either does or does not have
electric power. Power off represents storing a 0 and power on represents storinga 1. To
store numbers larger than 1 we need to go to multiple digits. A line of these circuits in a row
is called a binary pattern; everything in the computer is stored as a binary pattern.

A program consists of a list of instructions and data. Instructions are the binary patterns
we use to represent the operations we have built into the electronics of the CPU. Data is
anything else — other than instructions -- stored in the process of doing a task in the
computer. Data includes anything the program starts with, anything read in (for instance
from a user or afile), any interim values calculated, and any results.

Since there are a limited number of binary patterns of a given length? the same binary
pattern may be re-used, sometimes as a number, sometimes as an instruction, sometimes
as a character, sometimes as part of a color, etc.

! Main Memory (MM) is also called RAM, but RAM stands for “Random Access Memory,” and
in @ modern computer all storage is random access, so this is not a particularly meaningful
name

2 This length is the computer’s word size, for instance, a “64-bit computer” means that each
row in MM can hold a 64-bit-long binary pattern, so there are 64 transistor/capacitor pairs
there that may be charged (1) or uncharged (0). The rest of the hardware, such as the
busses that carry binary patterns from one part of the hardware to another, should match
the word size. Programs should be written taking the word size into account; if I try to

Main memory can store millions of binary patterns, so we need some way to keep track of
where things are. Each row in memory that can store a pattern is numbered, and this
number is called the Memory Address. Getting a stored pattern is called reading, changing
a stored pattern is called writing.

Memory Binary Pattern
Address

100 0000101011110000
101 0101001101011001
102 1010110100100111
103 0110101000000010
104 0000101011110000
105 0000000000000000

Getting data and instructions into the computer is input, and any results given back to a
useris output. Input and output generally require converting between some other format
and binary patterns.

write a machine language program using binary patterns that are 128 bits long on a
computer whose word size is only 64, it would not work.

(Actually, we could make it work by doing everything in two steps, processing the first half
of a 128-bit pattern from one row in a 64-bit MM and the second half from the next row.
Similarly, we could store two 32-bit patterns on a row in a 64-bit MM and process only the
first half of the row then only the second half. This kind of workaround usually slows things
down a lot, but may be worth doing in certain circumstances. Most people find working with
nitty-gritty hardware details like this boring, and want to just write high-level programs; if
figuring out how to do this sort of thing does sound exciting and interesting to you, take our
assembly language programming course!)

Programs

Machine Language Programs
The machine language of a computer is the list of all the instructions this computer’s CPU
can perform.

If we look at a real, running program in MM, we would just see a list of binary patterns.

Inside the CPU we need a little bit of storage for the current instruction and the data we are
working on right at this moment. Storage areas in the CPU are called registers. There is one
instruction register and several data registers.

The Arithmetic Logic Unit (ALU) of a CPU can generally do basic

CP l] arithmetic on binary numbers, and also logical operations such as
INSTRUCTION checking equality -- whether two binary patterns are the same.
REGISTER
At the level of machine language, we have to break down what we
PROGRAM want the program to do into things we were able to figure out how to
COUNTER build electronic circuits to do, which is a fairly simple list of options.
This means that the work of a programmer is all about figuring out
DATA . ..
REGISTERS how to solve a problem -- write a program to do a task -- by combining
0 a list of fairly simple tools. For instance, historically many CPUs had
: circuits to do adding, but building in multiplication was too complex
; and expensive, so if your program involved multiplication, you would
have to write your program to add over and over to achieve that result.
ALU

The CPU can move data around in MM and between MM and the data
registers. It does also need to be able to interact with the rest of the
hardware, so that we can save files to or from a hard drive, or show images on a screen, or

send data over a network, but all of these basically boil down to moving data around, and
the CPU has instructions for this.

A program will usually consist of millions and millions of instructions, so the CPU needs a
way to keep track of which instruction it is on while a program runs. The Program Counter
(PC) is the component of the CPU that keeps track of the Memory Address of the current
instruction; it automatically updates by one after each instruction is completed, so if the
CPU has just completed the instruction at Memory Address MM99 it will next do the
instruction at MM100.

A human would expect that the step after 99 is 100, but the CPU has to be built with
hardware to make this happen because it is not a thinking person, itis just a mechanism.

This is just one example of how much detailed work and thought has to go into designing a
computer to complete tasks.

To allow a program to have different behaviors depending on circumstances, such as
performing one of two options, or repeating the same operation, the CPU has to have
instructions that can change the Memory Address in the PC so that the next instruction
executed is not the next numerically.

Forinstance, if we have just done the instruction at Memory Address MM99 and we how
need to repeat the last 9 instructions, the next instruction in the program might set the PC
back to MM90, creating a loop. And so that the CPU can eventually leave this loop, there
would have to be the possibility that it will instead set it forward to jump elsewhere to do
other instructions.

Assembly Language

Few programmers want to write code in binary.

Although everything at the hardware level is in binary, even when we are talking about
hardware most people find working in binary unnecessarily difficult. Assembly language is
a programming language that uses human-friendly codes that stand for machine language
instructions, for example ADD for the instruction that tells the ALU to add binary numbers.
Each statement in an assembly language program represents one machine language
instruction.

Note that assembly language programs would be stored in the computer using the binary
for the letters and numbers in them, which are not the same as the binary for the
instructions they represent® So an assembly program cannot run; it would have to be
translated to machine language first; a program can easily do this however, since
translating assembly is just a matter of looking up each assembly code and replacing it
with the equivalent machine language binary.

There are actually various assembly languages for different types of CPU. here I’lluse a
very simplified version to give you an idea. In most assembly, the code for the action, the
operator, comes before any data it acts on, called operands. This style is called prefix
notation. You are probably more used to infix notation, which puts the action between two
data elements. So if my operator is ADD and my operands are 70 and 180:

3 The binary to store "ADD R1 R2 R3” would consist of the binary pattern for A then the
binary pattern for D (twice) and then the binary pattern for a space and so on. The actual
instruction for this in machine language would be a single binary pattern with on’s in the
positions to activate the right parts of the ALU to add, etc. and off’s elsewhere.

Prefix style: ADD 70 180

Infix style: 70 ADD 180

Suppose we want the computer to add two numbers for us. The Arithmetic Logic Unitin the
CPU has logic gates wired up to combine the 0’s and 1’s of two binary numbers to achieve
the right binary pattern for their sum. So, to tell the ALU’s adder (component that does
adding) to combine the binary pattern for 70 with the binary pattern for 180 we could start
by saying:

ADD 70 180

But do you see why this isn’t enough? This says to add the two numbers, but surely we did
that because we wanted the result! So we need to say something about where to put the
result or what to do with it.

Important principle: Always use the result of an operation. You might store it for later,
you might immediately do another operation on it, you might print it for the user to see, but
you should never do an operation without doing something with the result! If you don’t, that
operation was a waste of time.

So, the ADD instruction actually needs not two but three operands; the third is the location
to put the result. Main Memory is our storage for currently running programs, so we
probably want to put our result in MM* and we need to specify which row in MM to put it into
so that we can find it again later to use. We can specify the row in MM by putting MM in
front of the memory address (the row number). So

ADD 70 180 MM105

Says to add 70 and 180 and put the result in MM, on row 105.

People often ask, “How does CPU know this means to add 7 and 18 and put the resultin
MM105, instead of adding 7 and 18 and the data in MM105 all three together?” Well, first,
the assembly language codes are just for our convenience; they have to be translated to
machine language in order to run. To make it easy to do that translation (and easy for us to
write) we just always use the same order to mean the same thing.

But also remember that the CPU doesn’t know anything. The CPU is a bunch of logic gates
wired together in a specific way. The actual machine language binary code for this

4 A real ALU would get its data from and put its results into data registers. So the data
would have to first be loaded into data registers, and then the result would have to be
copied from a data register back into MM. Many modern computers could do several of
these steps in one instruction.

instruction has ons and offs in the right locations to send power down some wires and not
others. Some of those wires activate the parts of the ALU that does adding, some of those
wires carry the numbers into that adding component to be added, and some of those wires
activate the connections coming out of the ALU so that when the adder has resulted in a
binary pattern, those ons and offs are sent to the right place to store the result.

Actually a modern CPU has such a complex structure that just wiring its components
directly from the instruction register is insufficient, and a secondary structure called the
Control Unit just to decode instructions so that the right parts of the CPU are activated
based on different types of instructions is required. We would often say that the Control
Unit “knows” or “figures out” what the instruction is telling the CPU to do, but actually, itis
just another layer of mechanism that very clever people spent a lot of time and energy
figuring out.

There is no thinking and no knowledge going on in the CPU, the thinking is our job!

Butif thinking is our job, we probably think that this example seems like a silly thing to have
the computer do. We know what 70 + 180 is, so why have the CPU do this when we could
just have put the binary pattern for 250 in MM on line 105 in the first place? Instead of
explicitly using those numbers, we probably want our program to use values that it might
have read in from the user or afile, or calculated in previous steps. So instead of the literal
values 70 and 180, we want to use stored data. When we are writing hardware programs,
we use the memory locations where those values are stored. So now our statement might
look like

ADD MM103 MM104 MM10O5

This says to add whatever data is currently stored in MM on row 103 to whatever data is
currently stored in MM on row 104, and put the result back in MM on row 105. Since the
values on row 103 and 104 might be different each time this ADD instruction runs, we could
call MM103 and MM104 variables - they are representations of data that can vary instead of
specific values that are always the same.

Important principle: Instead of using literal values, use variables. Using literal values
limits what your program can do; using variables makes your code more flexible. Only use
a literal value if you’re sure that part of the program’s behavior should never change.

Now, it might be that MM103 is the row in MM where | stored the data | read in from a file
representing the company’s bonus per commission and MM104 stores the datalread in
from the user representing their base commission on a sale, so the result is their total. The
statement ADD MM103 MM104 MM105 has the right outcome, but we have to remember

what it means. One thing a high level language gives us that makes it easier to use than
assembly is named variables.

The Instruction Cycle

To run a program, the computer must do all the instructions in the program. The process of
doing a single instruction in a program is called an instruction cycle. The Instruction Cycle
is a four-stage process that the CPU repeats over and over. The stages are: Fetch, Decode,
Execute, and Update. Since this is a cycle, after each Update the CPU continues on to the
next Fetch.

The purpose of the cycle is to complete an instruction. The Execute stage is where the
instruction is actually carried out. During Fetch and Decode, the CPU prepares for
Execute, and during Update, it prepares for the next cycle.

In fact, the instruction cycle is the only thing the CPU ever does, from the time the
computeris turned on until it is turned off. The CPU doesn’t even know about programs. It
simply does the Instruction Cycle process over and over again.

For a program to run, its instructions and data must be stored in Main Memory, and the
Program Counter must be set to the Main Memory address of the first instruction. Then the
CPU does the instruction cycle over and over for all the instructions in the program.

Fetch

The CPU can only execute an instruction that is in the instruction register. So the first
stage, Fetch, is to copy the instruction to the IR. But with potentially millions of
instructions in MM, how does the CPU know which one to fetch? This is the purpose of the
Program Counter. The PC holds the MM address of the next instruction to fetch.

So, during Fetch, the address from the PC is sent to MM, which sends back whatever
instruction is at that address. This instruction is copied into the IR. Now the CPU has the
instruction but it cannot act on it yet.

Decode

Once the binary patternis in the IR, the CPU can set up to actually do the instruction. The
ons and offs in the binary pattern activate some parts of the CPU and deactivate others in
preparation to carry out the right task. In a modern CPU, the Control Unit deals with
breaking up the parts of an instruction to activate and deactivate the correct parts of the
instruction.

If the binary pattern copied to the IR turns out not to have been a valid instruction, the CPU
must deal with the error. Generally, it would change the program counter so that the next
instruction to be run will be the first step in the program that handles such an error.

Execute

Finally the CPU can do what the instruction says. What happens during Execute depends
on the instruction. For some instructions, the ALU will be performing mathematical
operations, for others, data will be copied over the bus, for others, the PC will be changed,
or arequest will be sent to the HD or... etc. etc.

The CPU does not check whether the instruction makes any sense from a human point of
view. As long as the instruction is one of the ones built into the CPU, it simply does what it
is told.

Update

Once the instruction has been executed, we are done with it. But we want the CPU to
continue on to the next instruction in the program when we do the next cycle. If the CPU
returned to Fetch immediately after Execute, it would be fetching the same instruction it
just did!

During the Update stage, the CPU adds one to whatever value is in the Program Counter, so
that on the next Fetch it can do the next instruction waiting in Main Memory.

This happens no matter what. The CPU can’t see what’s in Main Memory, so even if there
isn’t avalid instruction at the next MM address, the CPU will still update the address by 1.
This also means that if we want our program to change the PC to jump to some other point
in a program, or some other program entirely, we’d have to have our instruction set the
address to one less than where we want to end up, because the following Update will add 1
to whatever address we choose.

High Level Languages

Assembly Language gets us out of having to write code in machine language, but at the
hardware level we still have to break down our programming tasks into tiny pieces like
adding two binary numbers, moving a binary number around in the hardware, and changing
the Program Counter. Itis importantto understand that all real programs do work this way!
But few programmers are interested in having to think about all the hardware details such
as Memory Addresses, or to break tasks into such tiny pieces.

Most programmers choose to work in a High Level Programming Language instead. These
languages hide hardware details and give us more convenient tools to make programming

tasks easier. Examples of high-level languages are C, C++, C#, Python, Javascript, Visual
Basic, Perl, Lisp, and Java.

Different high level languages provide different tools and have different rules for how the
code is written. We would expect most languages to provide

e tools for storing data
o individual values: named variables with types
o lists of values: arrays
e tools for doing arithmetic and logical operations
e control structures for affecting the order of instructions (changing the program
counter)
o conditionals: choosing between options
o loops: repeating steps
e methods: a means of organizing part of a larger program into a named, re-usable
component
e tools forinput and output
e documentation tools, particularly comments — a means of adding notes to a
program to make it more readable for programmers without affecting how the
program runs

From these basic components, we can build programs to do complex tasks. High level
languages may also give us more sophisticated tools for organizing our programs and
controlling how data and actions are related, or lower-level tools that do allow us to use
hardware details when they are helpful for problem-solving.

Java, for instance, is an extremely popular language because it provides a balance between
ease of use and powerful tools. Other high level languages have advantages in one
direction or another, for instance C++ is in many senses more powerful, but with the trade-
off that many people find it more difficult to use.

Just like an assembly language program, a program in any high level language cannot run!
The CPU can only run programs in machine language. Having to translate from high level to
machine language ourselves would be annoying, especially since one line in a high-level
language might be translated into dozens, hundreds, or thousands of machine language
binary instructions. So we have programs to do this translation, but the task is much harder
than in assembly, where each code is just a stand-in for a specific machine language code.

To make it possible to translate a high level language program, we must have simple,
unambiguous rules for how to write programs in the language, rules simple enough that we

can write the translation program. The rules of spelling, punctuation, grammar, vocabulary,
etc, for a programming language are called the syntax.

Itis very important for programmers to be able to learn the syntax of a real language this;
someone who can’t bring themselves to care about the details of the syntax of a
programming language will struggle with programming! In this course, we will learn a little
bit of the syntax of the Java language so that we can write programs that can run; itis hard
to learn programming concepts if you cannot experiment with them and watch how they
work.

Compile and Interpret

There are two standard ways to translate from a high level language program to a machine
language program that can run: compiling and interpreting. Any language could be either
compiled or interpreted, but creators of a language tend to choose one approach or the
other depending on which better matches their goals and all programs for that language are
either compiled or interpreted.

For compiled languages, the original high level language program is given to the compiler
program, which translates the whole of the program to machine language and saves this
translation in afile called an executable. The executable is then given to the user, who can
run it over and over again.

For interpreted languages, when the user wants to run the program, they give the original
high level language program to the interpreter program, which translates it a little bit at a
time while running it, every time it runs.

Programmer Executable User

High Lewvel Program
puirlio wodd mindy |

int x = 1007

int y = 37

int z = x + ¥7

oot w fF Ls f e

=

High Lewvel Program

poblio statio vold sain{Etringi] args) | Hl'?fh LE'JE]. -:'rc"qram
int x = 1007 public atatic woid main[String|] srga) [
int y = 37 int x = 1001 L -

tnt T = x 4 ¥7 int g =5
Syatem, out.prLntlng®d is = ink g=x + 7y

Sywtem.cuk.println["C iz *

Note that the user would never need to have the compiler for a program written in a
compiled language, only the programmer needs it; the user can run the program they’re
interested in without needing an additional translation program. For an interpreted
language, the programmer would still need to have the interpreter, to test their program, but
the user needs this extra program as well.

Since all the translation has been done before the program is run, programs in compiled
languages run faster than programs in interpreted languages, which have to be translated
while they are run every time they run.

So far, all the advantages seem to be on the side of compiled language.

To understand the advantages of interpreted languages, consider that different types of
computer have different machine languages. A Mac will not understand instructions for a
Windows machine, and vice versa.

So, when we compile a program, we are compiling it for a specific type of computer. If we
compile a program for a Windows machine, that executable will not work on a Mac?®.
However, if the program is in an interpreted language, then as long as the user has the
interpreter on their computer, it will interpret into the correct language for the computer

5 Executables can sometimes be run on a different type of computer than they were
compiled for, using a program called an emulator. The emulator is essentially acting like an
interpreter, but instead of translating from a high level language to machine language as
the program runs, it translates from one machine language to another.

they have. This makes interpreted programs very portable, making them suitable for use in
web pages which will be used by people on many different types of computer.

User A

High Lewvel Program
public stwtlc wvold seindewing(] srgad |
[[irt a= 1m0
Tyt

ik z =& + 31

Sywtam. oot prictlad"E e "+ @l

User B

pablic shatdn
int x = LOG:

ity [

dmt xom w4 y;

High Lewvel Program

wdd mainiStrirgl] aspel [

Cpwtams. out paletini = im C o+

.-] B|;::: tpicins

So, if a program is written in a compiled language, it will be our responsibility as
programmers to compile different versions for different types of computer. This could take
extra work, if there are details of working with a specific operating system that must be

dealt with. In the case of interpreted languages, we only need to rely on users getting
access to the interpreter on their own computer.

Programmer User

|High Level ?rogram|

(1 12ndwoo

Itis also true that because the compiler has to finish translating the whole program before
we have an executable that can run, sometimes programmers prefer interpreted languages
for creating simple tools for immediate tasks because they could avoid waiting through a
long compilation process before they could test their program. However modern
compilation can usually be done very fast for small-scale programs in such situations.

It also used to be that compiled programs were always much, much faster than
interpreted, but now interpreted programs in some languages are almost as fast as
compiled®.

Historically, Java was an interpreted language, and during this time had a reputation for
being slow for this reason. However, Java has since continued its tendency towards trying
for balance by becoming one of the few languages that is both compiled and interpreted! A
compile step translates the program from complex high-level language to hardware level
instructions in a format of Java’s own, which is saved to a file; this intermediate format is
translated to the actual machine language for a specific machine at run time. So the most
time consuming part of the translation is done ahead, for speed, but translation is still done
at runtime for portability.

6 Now many ‘interpreted’ languages in fact take a hybrid approach, in which the slowest part
of the translation work is done through compilation into an intermediate form, which can
then be very quickly translated to the machine language of a specific kind of machine.

In this course, we will learn the fundamental ideas of programs and programming, but Java
is an example of how in the real world, our tools are often complex and take advantage of
multiple of the ideas we talk about.

Pseudocode

Sometimes we want to describe step by step what a program does before actually writing
the code in a high level language. Maybe we don’t want to have to think about the
limitations of a real language while we’re solving problems, maybe we need to figure out
the needs of a program before we can choose what language to work in, or maybe we’re
just trying to explain a conceptual process.

A pseudocode is a structured, formalized way of writing down what a program will do, step
by step. It has syntax rules, like a high level language, but is usually less specific and
formal, and more descriptive and human-friendly. We will use a pseudocode for many
examples and assignments.

An advantage of working in pseudocode is that you don’t have so many fiddly syntax details
to worry about, in some cases parts of pseudocode might just look like a text description,
as long as itdescribes in an unambiguous way what the program should do. A big
disadvantage is that you can’t then run your pseudocode to check whether the process it
describes actually works!

The Process of Programming

We often think of the process of writing a program as solving a problem - finding a way to
get from some input to some desired output.

We could think of the steps in creating a program as

e Requirements

e Design

e Coding

e Translation

e Debugging / Testing
e Deployment

e Maintenance

There are also many other ways we could reasonably break this process down.

Modern models of programming always assume that we will do a certain amount of
looping back: When testing, we will certainly find errors that will at least require going back
to the coding phase and then working forward again, but some errors might reveal that our

original design was flawed and has to be re-done, or even that we have to go back and
revise our requirements to resolve a conflict or ambiguity. If we are luckier, we might realize
problems with the design or requirements during coding and backtrack at that point.

Once we are in the maintenance phase, we might at any time have the requirements
updated, or have to revisit coding or design because of a technical issue such as a library of
someone else’s code that we relied on no longer being available.

Never expect that your journey through the programming process will be a straight line from
startto end. Infact, never assume that the process of dealing with any program will
necessarily have an end until that program is no longer in use by anyone.

Requirements.

You may sometimes have your own personal programming project where you define what
the program should do, but most of the time you should expect to be creating a program to
meet someone else’s needs.

Programmers are experts in writing programs, but they spend most of their lives doing this
in the context of someone else's area of expertise. If you are writing a program for a
chemist or an urban planner, you need to find out from them not only what the input and
output look like and any formal calculations involved, but also vocabulary, best practices,
processes, and so on used in their field.

People sometimes refer to “Engineer’s Disease” which is the assumption that if you are
smart enough to become an expert in your field then you are automatically an expertin
every field. This might result in ignoring important elements of a situation because you
don’t see why they matter, or changing the order of steps because it seems more
convenient to you. This leads to terrible programs that make people’s lives materially
worse. Watch out for this: you’ll be the expert in writing programs, but you need to talk to
an expert in the field your program is for, and you need to respect their expertise.

So, the first part of creating a program takes careful communication and negotiation to
determine what the program needs to do and how it should work. A formal description of
what the program is supposed to do is called the requirements.

Design

In the creation of a real program, the coding is the easy part. Learning enough about
someone else’s field to create useful requirements is possibly the hardest. But what takes
the most time and thought is program design, thinking through how you will use
programming tools, what data structures you need, how to divide up the program among
programmers, and so on.

There are many known approaches in programming to addressing common types of
situation. There are many sophisticated data structures for when we need to store lots of
data but something as simple as a list does not support our needs, for instance when we
need to be able to very quickly store many values in sorted order so that we can search
through them. Algorithms are known sequences of steps for solving recurring problems
such as how to find the closest pair of points in a large set, or how to plan a path that
passes through every one of a set of points.

There are various overall design methods. One of the most popular is Object Orientation,
an approach to designing a program which results in programs that are easier to write,
easier to update, and easier to maintain. Object orientation divides the situationin a
program into types of components that interact with each other, and identifies the
characteristics and behaviors for each type of component that the program needs to
represent

Design Patterns are a collection of known solutions to common problems in program
design, sort of like blueprints for common ways to set up parts of the program.

We should, as part of design, put thought into which programming language is appropriate,
based on their strengths, and which tools such as libraries of existing code and program
editing and testing tools we will use.

In this course we will eventually talk about object orientation, and a little bit about data
structures and algorithms, but for the most part we will be focused on learning the very
basic tools for how programs work and | will be making many of the design decisions for the
programs you will write, based more on helping you practice skills than on the absolute
most efficient or elegant way to solve a problem.

Coding

When you are first learning to program, you will mostly be focused on how to use new tools.
Eventually you will internalize these and be able to easily recognize when and how to use
them. Writing the actual lines of a program using the syntax of a particular programming
language is coding.

In most cases, there are multiple ways to write code to achieve the same result. Even
aside from the names we choose for our structures and how we document our programs,
we can use how we write our code to communicate how we are thinking about a problem:
saying “if the printing queue length is under 5, print the document” and “if the printing
queue length is not 5 or over, print the document” have the same result, but imply different
ways of thinking about the situation. You will also find that just as in writing text, people
have different styles of writing code, and by the end of the semester you may begin to

recognize the difference between your style and another student’s even justin
pseudocode. There isn’tjust one right answer.

Translation

When all the code of a program has been written, we use a compiler or interpreter to
translate it into machine language so it can run, but these can only translate if the program
was written following the syntax of the language exactly. If words were misspelled, or
punctuation left out, or words were in the wrong order, then the translation program will not
know how to translate that code. Instead, it will report a syntax error.

So we may spend some time going back and forth, re-writing the code to fix the syntax error
and then trying to translate again. In many cases, we may work in an Integrated
Development Environment (IDE), a programming tool that usually provides an editor and
other tools to help with programming, and this may check syntax constantly while we are
writing code, in a similar way to a word processor that checks spelling and grammar as you
write an essay.

Debugging / Testing

When all the syntax errors have been fixed, the program can run, and now we are ready to
test the code. A logic error (also known as a bug’) means that the program runs, but does
not meet all the requirements. This may mean that it freezes up, that it gets the wrong
results, or that it simply does not do one of the things the requirements said it should.

Fixing logic errors may be as simple as fixing a typo (e.g., the program added where it
should have subtracted) or may require going back and re-designing, then writing the code
again. Any changes made in this process may have added new syntax errors, which have to
be eliminated before we can run the program again... and find new logic errors.

For a large and complex program, the job of testing for and eliminating logic errors takes
many passes through this process.

Just as you may have found that when editing your own essays you miss errors that other
readers see immediately, itis common for a programmer to miss problems with their own
program, because they know how it is supposed to work. For this reason, we often start

7 Rear Admiral Grace Murray Hopper, who worked on the first compilers, once discovered
that a moth in the hardware of an early computer was causing a fault. Calling a logic error
a “bug” has a lot of the hallmarks of computer scientist humor: it uses a cutesy, misleading
name, it implies that the problem with a program isn’t the fault of our code (when it
absolutely is), and it is a very, very old in-joke.

with a list of formal test cases based on the requirements, to make sure that we have
tested the important aspects.

In real production code, a beta tester tests out the program before itis released, and tries
to find bugs the programmers missed. Good beta testers are good at thinking up bizarre
things to try, to see if they can get the program to go wrong by doing things the programmer
never expected.

Just being told there is something wrong with a program is not terribly useful. Details are
important, so good beta testers are also good at telling the programmers exactly what they
did — including what type of computer they were working on, what other programs were
running, and step by step what actions they took—and at telling the programmers exactly
what went wrong: what error messages they saw and whether the program froze up or
suddenly closed or made the whole computer reboot.

Beta testing is the phase when the programmers think the program has all the features it
should, but still has bugs to get rid of. Some companies also have an alpha testing phase.
Alpha testing means that the program is not finished, there is still more to add, but the
partial program can be run, enough that it can start being tested.

Some beta testers are just average users who agree to beta (or alpha) test a program,
generally in exchange for early access to the program. Professional beta testers have a
background in a computing field, which gives them the understanding and vocabulary to
give better reports on bugs to guide the programmer to find and fix the causes more quickly,
but these professionals expect to be paid!

Deploying and Maintaining

After a certain amount of testing, we will hit the date by which we have to release the
program for use, whereon users will inevitably find more errors. They will also expect the
program to keep working in the long term, and often want the program to be updated with
new abilities. Most programmers spend most of their careers maintaining existing code,
not writing code from scratch.

Lazy Coding and Comments

One way to think about our ideals as programmers is that we want to be as lazy as possible.
Part of this is just about writing programs in the first place: a well designed program can
take over a task to make people’s lives easier. But there are also many principles in the
practice of programming that are about being lazier. In general: we want to focus our
problem-solving efforts on the actual programming and avoid wasting mental energy on
other things.

Even if you are maintaining code that you wrote in its entirety, you will probably find that you
don’t remember every detail of how you solved all the problems, why you used the tools
you did, and what you had to fix and adjust two years ago when you added a new capability
to your code. Itis far more likely that you will be maintaining code written by others.

We tend to think of documentation as a help for users, but they are also a way to
externalize our understanding of the program so we don’t have to remember it. Comments
are notes in the body of the program itself. Good comments can make it much easier to
maintain code written by someone else, or your former self.

Even if you are writing a fairly short and simple program, you will probably find that it is
difficult to remember every detail of your design as you are writing. Most real programs are
so large and complex that you will only be working on a part, while other programmers work
on other parts, and nobody should be expected to remember the entire design.

There are various design approaches for breaking down a large complex program into
smaller pieces to make it manageable. Methods are a fundamental tool for breaking down
a complex process into subtasks. Object orientation is a common approach to dividing a
program into modular parts that can be programmed separately by different teams but still
work together.

Overall, many of the practices | will encourage in this course will take a little more work up
front (like writing a few brief comments into your code) in order to save time and mental
effort later.

Hello World

By tradition, when learning to program your first program in a new language is called “Hello
World” because it is a program that just prints the words “Hello World” to prove that you
can write a program that runs and does anything at all.

In our pseudocode, a Hello World program might just look like

print(“Hello World”)

A method is a unit in the structure of a program representing the steps to do a task. Each
method has a name, which should clearly communicate what the method does; we call a
method using its name to indicate that the steps in the method should run at that pointin
the program, without listing out all those steps right there.

Printing output on a screen is a complex process, so we’ll assume in our pseudocode that
we always have a method called print that knows how to do those steps, and we’ll call print
whenever we want those steps to happen.

We need to tell the print method exactly what we want to see printed.

Method names are followed by parentheses. This is how we get data from our program into
a method. You can think of the parentheses as the mouth of the method. We are feeding

“Hello World” as input data to the print method to tell it that the thing it should printis
“Hello World”.

We use double quotes around text to surround string literals, that is literal strings of text
that are data in our programs, not names of some part of how the program works. A string
literal should be able to hold anything we want to print. So print() is the method, but
“print()” would be a literal string with the letters p, 1, i, n, t, (, and) inside it.

Hello World in our pseudocode was just one line long. Here’s what a Hello World might
look like in the Java language:

public class SaysHello {
public static void main(String[] args){

System.out.println("Hello World");

}

The rules of Java would also require that this be stored in a file named SaysHello.java.

So you can see that when we just want to explain a process, it might be a lot easier to work
in pseudocode and not take into account all the extra details a particular language
requires. However, you could pop this Java code into a Java compiler and see it run.
Pseudocode will never be able to do that.

