
Objects
Most languages give us basic types to store numbers, text, and Booleans, and arrays to store

lists of values. Object Oriented languages provide tools for creating user-defined types that

combine storage for multiple types together, alongside methods, to represent more complex

components of a program.

The Procedural Paradigm in programming design thinks of a program as a series of steps. This

series can be very complex, involving many loops, conditionals, and methods, but ultimately it

can only design a program in terms of events happening in a particular order. If you think about

a menu-based program, where the user is offered a list of options over and over, which may

lead to actions and/or other lists of options, and so on, procedural programming describes this

very well.

However, if you think about a modern word processor, operating system, or open-world game,

describing these in terms of a series of steps is much more difficult. The user could choose to

use any part of the program at any time in any order, and most of the parts interact with one

another. It would be easier to think of these programs as groups of interacting components.

The Object Oriented Paradigm in programming design thinks of a program as a group of types of

components, each of which has characteristics and behaviors. The types of components will be

represented in the program by types of object, usually called classes. The characteristics of the

components will be represented by variables stored in the classes, and the behaviors by

methods stored in the classes.

Classes

A class represents a type of component involved in a program. When designing a program using

object orientation, the first step is to identify what the classes should be. Once classes are

created, each class will be a valid type for variables in the program, just as good as built-in types

like int or double. Each class should be named with a meaningful name, and in our pseudocode

we will give them names that start with a capital letter. We use the keyword class to begin a

class, and each class is a structure that ends with endclass.

So, if our program will involve dogs and cats, we might create a class Dog and a class Cat, and

once created, those become valid types for variables in that program. The values of these

variables, based on the class, are called objects also known as instances of the class.

class Dog

 // we will put more here soon

endclass

class Cat

 // here too

endClass

void main()

 int x // x is a variable of type int

 Dog fluffy // fluffy is a variable of type Dog

 Cat muffy // muffy is a variable of type Cat

 Dog d2 // d2 is another variable of type Dog

 Cat c2 // c2 is another variable of type Cat

end main

In the code above, we could say that “fluffy is a Dog object”, or that “fluffy is an instance of the

class Dog” but when being casual, we would often just say that “fluffy is a Dog” just as we would

say that “x is an int”.

Instance Variables

For each class type in our program, there may be various characteristics we need to keep track

of. Some of these may be permanent characteristics, such as the name or breed of a dog,

others may be used for tracking a current state that can change over the run of the program,

such as whether the dog is hungry or asleep. As usual, we will store these values in variables,

but these variables will be collected inside the class.

These are known as instance variables, fields, or attributes of the class. To add an instance

variable to a class we simply declare it inside the class structure.

class Dog

 String name // instance variable for the Dog’s name

 int age // the dog’s age

 boolean awake // is the dog currently awake?

endclass

When we have a variable of a class type, we can access the instance variables in that object

using the dot operator syntax. A period goes between the name of the class-type variable and

the name of one of that class’ instance variables. We usually pronounce this dot operator as a

possessive s so fluffy.age is pronounced “fluffy’s age”.

Just like values that live inside an array, values that live inside an object are still values of their

type and can be used anywhere else we would use such values. We can print them; we can use

them to do math if they are numbers; we can use them to make decisions if they are Booleans.

Each instance of the class has its own copy of the full structure of the class, including all the

instance variables.

class Dog

 String name // instance variable for the Dog’s name

 int age // the dog’s age

 boolean awake // is the dog currently awake?

endclass

void main()

 int x

 Dog fluffy

 Dog d2

 // use the dot operator to access fluffy’s name

 fluffy.name = “Fluffywuffykins”

 name = “Wrong” // error, we didn’t create a variable name

 // we can only access the name in the dog class

 // by using the dot operator for a specific dog

 int age = 5 // legal, but this age is unrelated to

 // the dogs’ ages

 // d2’s name is a separate variable with its own value

 // it is a string, we can read it in from the user

 d2.name = prompt “What is the second dog’s name?”

 // fluffy’s age

 fluffy.age = 2

// fluffy.age is an int, we can do math with it:

 x = fluffy.age * 3 // x is now 6

 d2.age = fluffy.age + x // d2’s age is now 8

 // d2 is awake

 d2.awake = true

// d2’s awake variable is a boolean, we can use it

// to make decisions

 if (d2.awake) then

 print d2.name + “ is awake”

 endif

end main

As usual, we need to know for a given language what values the instance variables have if we

have not initialized them explicitly. They might have default values, garbage values, or be

unable to be used until they are initialized. We will assume in our pseudocode that they have

the default values 0 for numbers, false for Booleans, null for strings.

But now there are other possibilities for types! Since a class defines a type that is valid for

variables, we can put an instance variable of one class type inside another class.

class Cat

 String name // the cat’s name

 double weight // the cat’s weight

 double fleaWeights[10] // the weight of each flea

endclass

class Dog

 String name // instance variable for the Dog’s name

 int age // the dog’s age

 boolean awake // is the dog currently awake?

 Cat buddy // the dog’s buddy, which is a Cat

endclass

void main()

 Dog fluffy

 fluffy.name = “Fluffers”

 fluffy.age = 2

Dog d2

d2.name = “Spot”

d2.age = 1

d2.awake = true;

//fluffy’s buddy (a cat) is named “Mr. Whiskers” and

// weighs 4.2 lbs

fluffy.buddy.name = “Mr. Whiskers”

fluffy.buddy.weight = 4.2

// the weight of the 0th flea on fluffy’s buddy is .0002

fluffy.buddy.fleaWeights[0] = .0002

// a separate cat unrelated to the dogs

Cat ginger

ginger.name = “Ginger McBeans III”

end main

Notice that the instance variables of a class are local to that class. The name instance variable

inside Cat does not interfere with or create a special relationship with the name instance

variable inside Dog, and neither can be directly accessed outside the class without using the dot

operator to explicitly say which Cat or Dog it is related to

We will assume that default values apply to instance variables of instance variables (and so on),

so since we never set values for d2’s buddy’s instance variables, its name is still null and its

weight is 0 and all its fleas start as weight 0.

Class Methods

An object is not just a user-defined data type that combines other data types, it also allows us

to group together behaviors specific to the type of component by putting methods inside the

class. We think of these methods as behaviors that are being done by an instance of the class.

Each method in the class has access to all the class’ instance variables in addition to any

parameters and other local variables of the method itself.

We can access an object’s behavior methods using the dot operator.

class Dog

 String name // instance variable for the Dog’s name

 int age // the dog’s age

 boolean awake // is the dog currently awake?

 void bark()

 print name + “ says woof”

 end bark

 void sleep() {

 print name + “ goes to sleep”

 awake = false;

 end sleep

 int convertAge() {

 int peopleYears = age * 7

 return peopleYears

 end convertAge

endclass

void main()

 Dog fluffy

 fluffy.name = “Fluffers”

 fluffy.age = 2

Dog d2

d2.name = “Spot”

d2.age = 1

d2.awake = true;

// fluffy does fluffy’s bark behavior

 fluffy.bark() //print “Fluffers says woof”

 // d2 does d2’s bark behavior

 d2.bark() //print “Spot says woof”

 d2.sleep() // print “Spot goes to sleep”

 // d2.awake becomes false

 print “in people years, “ + d2.name + “ is “ +

 d2.convertAge() + “ years old”

end main

Like any other method, the methods defined in a class are only called if they are called by the

program starting from main.

Just as we have to be able to write a method in general to use its parameters without deciding

beforehand what the value of the parameters will be, we have to be able to write a method in a

class to use its instance variables without knowing what the values of those instance variables

will be. We should generally assume that there will be multiple instances of the class created,

and each instance of the class should be able to do its behaviors and maybe get different results

depending on the current values of the instance variables.

Since an array can hold any type that is valid for a variable, we can also have arrays of object

types. In most cases if we have multiple kinds of information about a list of things, it is much

better to create a class to hold the kinds of information in instance variables, and then have an

array of that type, instead of using parallel arrays

void main()

 // instead of three parallel arrays for

 // dog name, age, and awake status

 Dog kennel[10] // create array of 10 dogs

 kennel[0].name = “Spot”

 kennel[0].age = 7

 kennel[0].awake = true

 kennel[1].name = “Rover”

 kennel[1].age = 3

 kennel[1].awake = false

 // etc, fill in rest of dog info

 // have each dog bark and then go to sleep

 for (int i = 0; i < kennel.size; i = i + 1)

 kennel[i].bark()

 kennel[i].sleep()

 endfor

end main

Pointers

We were able to give the Dog class a Cat type variable, buddy, so that our dog could be friends

with a cat. But what if we want to represent a dog being friends with another dog?

class Dog

 String name // instance variable for the Dog’s name

 int age // the dog’s age

 boolean awake // is the dog currently awake?

 Cat buddy // the dog’s buddy, which is a Cat

 Dog bestFriend // the dog’s best friend is another Dog?

endclass

void main()

 Dog fluffy

 // no point in putting code here, the line above

 // NEVER ENDS

end main

If we do this, then to create the structure of the Dog object, the computer would have to create

another Dog object inside it, which has another Dog object inside it, which has another Dog

object inside it, which has another Dog object inside it, which has another Dog object inside it… This is infinite

recursion hell. We can never stop making Dogs!1

Dogs need dog friends! We need to solve this problem!

The solution is known as pointers or reference variables. Instead of having Dog structures

nested inside each other, we will give a Dog object a different way to access another Dog object:

1 At first, infinite puppy sounds good, but remember, we never finish building them, so we can never pet these poor
infinitely recursive puppers.

we will give it the ability to store the address in main memory where the other Dog is located.

A variable that stores the memory address where data is stored is called a pointer or reference.

Remember that the main memory (RAM) of the computer is just a big table of numbered rows,

and on each row we can store some data. The row numbers are called memory addresses.

Since the rows are numbered, one kind of data we can store on a row is the memory address of

another row in memory.

Remember that a variable is actually just a name for a particular row of memory anyway. Data is

always stored at a memory address, variables just give us the convenience of using a

memorable name instead of remembering a number. So a pointer variable is also a name for a

row of memory, but instead of storing the value directly there, we are using that row to store

the number of another row.

In our pseudocode, we will use an asterisk to denote that a variable is a pointer to a type

instead of directly holding the value of that type. We will also use an asterisk when we want a

pointer to be able to point at an existing variable’s address. So

// assume we are inside main

// and the Dog class is already

// created

Dog actualDog // just an actual dog

Dog d2 // another actual dog

Dog * leash // a pointer to a dog

// point leash at actualDog’s

// address in memory (MM100)

leash = *actualDog

// these two lines mean

// exactly the same thing

// both affect the name of the dog

// at address MM100

leash.name = “Actie”

actualDog.name = “Actie”

// now leash points at d2

 leash = *d2

variable MM value

actualDog 100 name: “Actie”
age: 0
awake: false

 …

d2 200 name: null
age: 0
…

 …

leash 300 MM100

variable MM value

actualDog 100 name: “Actie”
age: 0
awake: false

// these two lines do the same thing

 leash.name = “Spot”

d2.name = “Spot”

 …

d2 200 name: “Spot”
age: 0
…

 …

leash 300 MM100
MM200

A pointer variable holds the memory address of a value, so it can hold the memory address of

another non-pointer variable of its type. You can think of a pointer as being like a nickname

that can be used alternately with another variable name, or like a remote control that can be

paired with an existing piece of electronics, or like a leash that can control an animal. But the

leash isn’t the animal itself, just a way of controlling it.

Note that leash in the above code was first pointed at actualDog, and so it could be used to set

that Dog’s name, but later, it was pointed at d2, and could be used to set that Dog’s name.

Imagine hooking a leash first onto one dog’s collar, and later onto another dog’s collar.

To picture what is happening in memory when this code runs:

• When we create actualDog, a chunk of main memory is taken to store all the data for a

dog. Let’s say this chunk starts at address MM100. The actualDog variable doesn’t

hold the value MM100, it is MM100, what it holds is space for all the instance variables

and any methods defined in the Dog class

• Similarly, let’s say that d2’s data is stored starting at MM200.

• leash is also a variable, so its value is also stored on a row in memory, let’s say MM300,

but it isn’t storing a Dog, it just stores a memory address where we will find an actual

dog.

• When we say leash = *actualDog, we are saying that leash now is pointing at actualDog,

which is MM100. So on leash’s row in memory, we will store MM100. This means that

when we say leash.name, that takes us to MM100.name.

• When we later say leash = *d2, leash now points at MM200, so in the later line

leash.name takes us to MM200.name.

In our pseudocode we are using the dot operator to access the instance variables of both object

variables and pointer variables. Some languages use different syntax for the two cases, for

instance in C++ it would be actualDog.name for the object and leash->name for the pointer.

When we assign one variable to another, we are copying its value. For object variables, this

means copying the whole object, including the values of all instance variables. But the value of

the pointer variable is just the memory address. This means that when we assign one Dog

object variable to another, we end up with two Dogs. But when we assign one Dog pointer to

another, we just have two memory addresses, and we are not making another Dog.

Dog firstDog

Dog secondDog

Dog otherDog

Dog * pointerA = * otherDog

Dog * pointerB

firstDog.name = “Fluffy”

firstDog.age = 4

// copy firstDog’s value

// which means all parts of the

// dog object

secondDog = firstDog

// change the name in the copy

secondDog.name = “Muffy”

// pointerA is pointing at otherDog

pointerA.name = “Buffy”

pointerA.age = 3

// copy pointerA’s value

// which is just the memory address

// of the otherDog variable

pointerB = pointerA

// both pointers point at the same

// dog, so any changes made by

// either one affect that

pointerB.name = “Clyde”

variable MM value

firstDog 100 name: “Fluffy”
age: 4
…

 …

secondDog 200 name: “Fluffy”
 “Muffy”
age: 4
…

 …

otherDog 300 name: “Buffy”
 “Clyde”
age: 3
…

 …

pointerA 400 MM300

pointerB 401 MM300

Now we can finally fix our Dog class to give a Dog a bestFriend who is another Dog

// Dog class with pointers

class Dog

 String name

 int age

 Dog * bestFriend

endclass

void main()

 Dog fluffy

 fluffy.name = “Fluffy”

 fluffy.age = 3

 Dog spot

 spot.name = “Spotty”

 spot.age = 2

 // using pointers, they become

 // each other’s best friend

 fluffy.bestFriend = * spot

 spot.bestFriend = * fluffy

 print spot.name +

 ” is best friends with “ +

 spot.bestfriend.name +

 “ whose best friend is “ +

 spot.bestfriend.bestfriend.name”

end main

variable MM value

fluffy 100 name: “Fluffy”
age: 3
bestFriend MM200
…

 …

spot 200 name: “Spotty”
age: 2
bestFriend MM100
…

 …

The last line would print “Spotty is best friends with Fluffy whose best friend is Spotty”. Since

the bestFriend variable is a Dog pointer, and every Dog has a bestFriend variable, and we have

made these two Dogs each other’s bestFriend, we could go around this circle indefinitely. Make

sure you understand why this would be a perfectly valid thing to write at the end of the above

code:

fluffy.bestFriend.bestFriend.bestFriend.bestFriend.bestFriend.be

stFriend.bestFriend.bestFriend.bestFriend.bestFriend.bestFriend.

bestFriend.bestFriend.bestFriend.bestFriend.bestFriend.bestFrien

d.bestFriend.bestFriend.bestFriend.bestFriend.bestFriend.bestFri

end.bestFriend.bestFriend.bestFriend.bestFriend.bestFriend.bestF

riend.bestFriend.bestFriend.bestFriend.bestFriend.bestFriend.bes

tFriend.bestFriend.bestFriend.bestFriend.bestFriend.bestFriend.b

estFriend.bestFriend.bestFriend.bestFriend.bestFriend.bestFriend

.bestFriend.bestFriend.age = 8

Creating objects with Pointers

In the previous examples, we created Dogs, and then used a pointer to point at one of them,

then the other. But we don’t have to create the object in a regular variable first before putting

the address in a pointer. The new syntax is used to create an object and store its address in a

pointer.

// pointers that can store addresses

// of Dog objects

Dog * pointerA

Dog * pointerB

// create new Dog objects

// and store their addresses

// in the pointers

pointerA = new Dog // MM200

pointerB = new Dog // MM300

pointerA.name = “Mr. Dog”

pointerA.age = 5

pointerB.name = “Spot”

pointerB.age = 2

// create another new Dog object

// and change the pointer to that

// address

pointerA = new Dog // MM400

// these changes apply to the

// new Dog at MM400 not the

// old one at MM200

pointerA.name = “Caesar”

pointerA.age = 1

// switch pointerB to also be

// the dog at MM400 instead of the

variable MM value

pointerA 100 MM200
MM400

pointerB 101 MM300
MM400

[none] 200 name: “Mr Dog”
age: 5
…

 …

[none] 300 name: “Spot”
age: 2
…

 …

[none’ 400 name: “Caesar”
age: 1
 7
…

 …

// one at MM300

pointerB = pointerA

// this change applies to the new

// Dog at MM400

pointerB.age = 7

In this example we used new to create three dogs and each pointer started off pointing at one,

but later ended up pointing at another.

Also notice that by the end of the code, there were no pointers storing the memory addresses

of two of the Dogs we created, and this means that if our program continued, it would have no

way to access those Dog objects! See the section on Memory Management for more on

situations like this.

Let’s give the Dog a cat buddy again, but make it a pointer this time so two Dogs can have the

same Cat buddy:

// simpler Cat class

class Cat

 String name

 double weight

endclass

// Dog class with pointers

class Dog

 String name

 int age

 Cat * buddy

 Dog * bestFriend

endclass

void main()

 Dog fluffy

 fluffy.name = “Fluffy”

 fluffy.age = 3

 Dog spot

 spot.name = “Spotty”

 spot.age = 2

 // using pointers, they become

variable MM value

fluffy 100 name: “Fluffy”
age: 3
buddy MM300
bestFriend MM200
…

 …

spot 200 name: “Spot”

 // each other’s best friend

 fluffy.bestFriend = * spot

 spot.bestFriend = * fluffy

 // give fluffy a Cat buddy

 fluffy.buddy = new Cat

 fluffy.buddy.name = “Ginger”

 // spot’s buddy is the same Cat

 spot.buddy = fluffy.buddy

 spot.buddy.weight = 7.2

end main

age: 2
buddy MM300
bestFriend MM100
…

 …

[none] 300 name: “Ginger”
weight: 7.2
…

 …

Note that in this code, there are two ways to refer to the cat named “Ginger”, either as

spot.buddy or as fluffy.buddy, but we did not create a variable of its own to refer to it. This is a

good way to communicate that in this code we only care about this cat in terms of its

relationship to the dogs. If we later decide that the cat is important in itself, we could always

add a line like

Cat * ginger = fluffy.buddy

Again, an array can hold any type that is valid for a variable, so we can have an array of pointers

to a class type. We will assume that they all start as the value null, so we have to use new to set

each one up before using it.

void main()

 Cat * kittyList[10] // an array of 10 pointers to Cats

 for (int i = 0; i < kittyList.size; i = i + 1)

 kittyList[i] = new Cat

 // generating some starter names and weights

 kittyList[i].name = “Cat #” + (i+1)

 kittyList[i].weight = (i+1)*2.2

 end for

end main

Null Pointers

The value null represents an invalid memory address. We will assume that pointers to objects in

arrays and as instance variables default to the value null. Trying to use the dot operator on a

pointer to act on variables or methods inside an object when the pointer is holding the value

null is a runtime error.

This null pointer error is the best thing that could happen if we have not initialized the value of a

pointer. Remember that some languages let variables use the “garbage value” that happened

to be sitting on their row in memory (from some previous program perhaps) when they were

declared. For other types of variable, this might lead us to calculate or print a wrong or

nonsensical value, which could certainly lead to trouble. But suppose the variable is a pointer

and that garbage value is a valid value for a memory address. If we try to write data to

something at that value, we could end up overwriting any other data or instruction anywhere in

Main Memory!2

A null pointer error is one of the most common types of error when programmers are learning

to write code with pointers, because it is easy at first to forget which elements of an array or

instance variables have not been initialized yet

// simpler Cat class

class Cat

 String name

 double weight

endclass

// Dog class with pointers

class Dog

 String name

 int age

 Cat * buddy

 Dog * bestFriend

endclass

void main()

 Dog fluffy

 fluffy.name = “Fluffy”

 Dog spot

 spot.name = “Spotty”

 // error! bestFriend is null

 fluffy.bestFriend.age = 4

variable MM value

fluffy 100 name: “Fluffy”
age: 3
buddy null
bestFriend null
…

 …

2 In modern systems under virtual memory, our program should never be allowed to write to a memory address
outside the pages of main memory that the operating system assigned to our program. This limits a garbage value
for a pointer to only wreaking unspeakable havoc on our program’s own instructions and data. Yay?

 // error! buddy is null

 fluffy.buddy.name = “Ginger”

 // make this not null

 spot.bestFriend = * fluffy

 spot.bestFriend.age = 3

 // but this is still null

 spot.bestFriend.bestFriend.age = 1

end main

spot 200 name: “Spot”
age: 0
buddy null
bestFriend MM100
…

 …

 …

Note that since we set spot’s bestFriend variable to point to fluffy, it stopped being null, but

that did not automatically make fluffy’s bestFriend variable point to spot (not all friendships are

requited, sad to say).

Memory Management

In a previous example, we pointed a pointer variable at a Dog that we did not have a plain

object variable for, and then changed that pointer to point at a different Dog, which meant we

lost access to that Dog object. The object still existed in main memory, but our program no

longer had access to it.

Although in examples I have drawn main memory very simply, programs actually divide their

memory space into areas called the stack and the heap. When we create an object variable (not

a pointer) space for that object would actually be in the part of main memory for the method it

was created it, in the stackframe for that method on the stack. This means that when this

method ends, the space for that object is automatically marked as able to be re-used for other

methods if the program is still running. But when we use the new operator to create an object,

space for that object is located on the heap, and is not automatically given back at the end of

the method.

This allows us to create objects in a method that persist after that method ends, without having

to return them. But this is only useful if we can still access those objects through pointer

variables.

In some languages, it is the responsibility of the programmer to manage how their program

uses main memory space. If we use the new operator to create an object on the heap and then

lose access to it, in these languages we can now no longer reuse this memory space to store

something else – it is still marked as being in use – but we cannot actually use the data there.

This is called a memory leak.

In these languages, the programmer must use another operator called delete to explicitly

give back the space for an object on the heap so that space can be re-used. It is important to

not delete too early – that would mean destroying data while we still need it. But it is also

important not to delete too late – once we no longer have a pointer to that object, we no longer

have a way to refer to it in the program so now we can’t delete it, and a memory leak has

occurred.

In other languages, this is not the programmer’s responsibility; instead, the program’s memory

space automatically undergoes a process called garbage collection where objects on the heap

are tested to see whether they are still reachable by following pointers starting from variables

still on the stack. If we can no longer access an object on the heap in any way from the stack,

that means the code can no longer use that object, and it is automatically marked as space to

be re-used.

Garbage collection is much more convenient for programmers, and means that at most we can

run low on space for a little while until the next time garbage collection runs during the run of

our program. On the other hand, garbage collection takes up time and resources; it can be far

more efficient to manage our own memory and make sure that we give memory space back

exactly when we need to, especially if we have limited space to work with, ether because we

have a small RAM or a very large amount of data to deal with.

Pass By Reference

Remember that generally we have assumed that methods will handle their parameters

following the pass by value rule – changes made to a parameter will not affect any variable

passed in for that parameter. However, we did assume that arrays worked on a pass by

reference model – when we passed in the array, we were passing the memory address of the

start of the array itself, so when changes were made to values in the array, these changes were

still there after the method ended.

We can get the same behavior for other types by using pointers as our parameter types.

// Dog class

class Dog

 String name

 int age

 Dog * bestFriend

endclass

void main()

 Dog fluffy

 fluffy.name = “Fluffy”

 fluffy.age = 3

 // pass a pointer

 // changes will affect fluffy

 playdate(*fluffy)

 // Mr Friendly is sticking around

 print “still friends with “ +

 fluffy.bestFriend.name

 // pass a copy

 // no changes to fluffy

 // but….

 dream(fluffy)

 print fluffy.bestFriend.name +

 “ was so freaked out by “ +

 “that dream he seemed to “ +

 “ age a year and is now “ +

 fluffy.bestFriend.age

end main

// pass by reference method

// visitor is a pointer

void playDate(Dog * visitor)

 // it was a long playdate

 visitor.age = visitor.age + 1

 // create a new Dog

 // on the heap

 Dog * playMate = new Dog

 playMate.name = “Mr. Friendly”

 // put the address of the new dog

 // into visitor’s bestfriend

 // variable – permanent change

 visitor.bestFriend = playmate

 print visitor.name +

 “ made friends with “ +

 playmate.name

variable MM value

fluffy

100 name: “Fluffy”
age: 3
 4
bestFriend MM250
…

 …

visitor 200 MM100

playMate 201 MM250

[none]
(actually
on the
heap)

250 name: “Mr. Friendly”
age: 1
bestFriend null
…

 …

dreamer 300 name: “Fluffy”
age: 3
 1000
bestFriend MM250
…

 …

end playdate

// pass by value method

// dreamer is a copy of the dog

void dream(Dog dreamer)

 // changing the local copy

 // this does not affect fluffy

 // back in main

 dreamer.age = 1000

 print dreamer.name +

 “ dreamed of being the “ +

 “oldest dog in the world.”

 //this dream is so weird

 // it ages your best friend

 // changing a value on the heap

 // this is still there later

 if (dreamer.bestfriend!=null) then

 dreamer.bestfriend.age = 1

 endif

end dream

The playdate method takes a pointer to a Dog, so changes to the visitor pointer’s values affect

the original Dog fluffy. The change to visitor’s age is a change to fluffy’s age. When we give

visitor a new bestFriend, that Dog is still reachable (on the heap) when we get back to main.

The dream method, however, is pass by value. So the dreamer variable just gets a copy of the

Dog’s values, and the changes made to that copy don’t affect the original. However, since the

copy included a pointer, and that pointer does point to the actual Dog in main memory at

MM250, we can make a change that persists to that Dog object.

So, we can take advantage of putting data in objects on the heap and using pointers to get more

back from methods than we could just by returning values.

Pointers for Other Types

We made use of pointers for objects initially to avoid infinitely nested puppies, and it gave us a

lot of flexibility for working with objects. In some languages, we can have a pointer to any type,

including our primitive types for numbers, Booleans, and text.

The pointer stores the memory address. If we want to follow the pointer to get at the actual

value, we need a dereference operator, for which we will use & (this is what C++ uses).

void main()

 // a normal int

 int num = 19

 // pointer to an int

 int * numP = * num

 print num // 19

 print numP // MM100

 print &numP // 19

 &numP = 25 // changes num

 // this method will change

 // num’s value

 int adj = adjustVal(num)

 print “it took “ + adj +

 “ tries to find the value “ +

 num

 int big = 999

 int small = -1

 // point numP at one of these

 // ints

 if (adj > 0 AND adj < 10) then

 numP = *big

 else

 numP = *small

 endif

 // zero out whichever one

 // currently pointed to

 &numP = 0

end main

int adjustVal(int * changed)

 int tries = 0;

variable MM value

num 100 19
25
(final value depends
on user…)

numP 101 MM100
(final value depends
on user…)

sum 102 999
(final value depends
on user…)

crumb 103 -1
(final value depends
on user…)

 …

changed 200 MM100

tries 201 0
(final value depends
on user…)

 …

 print “number is “+ &changed

 string user = “do you like it?”

 while (user != “yes”)

 tries = tries + 1

 &changed = &changed * 2

 print “number is “+ changed

 string user = “do you like it?”

 end while

 return tries

end adjustVal

Here we used pass by reference to allow a method to change the value of a variable from the

calling method. Since the adjustVal method was already returning the number of tries the user

took, it needed another way to get the final value the user chose for its parameter back to the

main program.

Pointers to simpler types allow us to use multiple names for the same value (row in main

memory) which can help readability.

It also gives us one way to simplify code. Above we first decided which of the two variables, big

or small, to point the numP pointer at. After that, we can write code for the pointer, knowing it

will change the relevant variable, instead of having the same code in both the if and the else,

but once for big and once for small. There are several other ways to get the same result

without repeating code however, and many people feel that pointers are not the best way to

achieve readability. It is mostly when we are dealing with objects that pointers become the

cleanest way to write a lot of code.

Inheritance

When we design the classes for the object types in a program, there can be various

relationships between them that we want to represent. We have seen one kind of relationship,

with one class having an instance variable whose type is another class, like a Dog having a

buddy that is a Cat. But another kind of relationship is that one class is just a more specific

version of another class, or multiple classes are different versions of something more general.

To represent this kind of relationship, we use inheritance between the classes.

Suppose in our design we realize that Dogs and Cats and Budgies all have a lot of things in

common: they all have a name and an age, and all can eat and sleep and do these things in

roughly the same ways

Dog Cat Budgie

string name
int age
string breed
Cat * buddy

 string name
int age

 string name
int age

void eat()
void sleep()
void bark()

 void eat()
void sleep()
void miaow()
void eat(Budgie*)

 void eat()
void sleep()
void tweet()
void fly()

Thinking about dogs, cats, and budgies, we also think that, conceptually, they are related, they

are all kinds of living things, kinds of animals, kinds of pets. In this situation, we would abstract

out the common elements. This means that we take the common elements and try to identify

what type of object that area of overlap would represent, which will be something more

abstract – more general and less specific – than the classes we started with.

Note that if we look at the behaviors we identified, there’s another thing other than eat and

sleep that they have in common. Dogs bark, Cats miaow, and Budgies tweet, and these are all

kinds of making noise. In the process of abstracting out, we might decide to simplify our design

and just have one method name for all of these, calling it a method makeNoise().

Since these animal classes all have names, we’ll decide that this more general class should be

Pet.

Pet

string name
int age

void eat()
void sleep()
void makeNoise()

So we would create the Pet class, and then have the other classes inherit from the Pet class,

which means they will get everything that Pet has, without having to actually copy the code.

This means we only have to write the common elements once, and if we need to update them,

we only have to update one place, but all the inheriting classes still get to use those elements.

Each of those classes can also add anything it needs that makes it different from the original

Pet.

We will use the keyword inherits to indicate inheritance in our pseudocode.

class Pet

 string name

 int age

void eat()

 print name + “ eats some food”

 end eat

 void sleep()

 print name + “ sleeps. Honk-shu, honk-shu”

 end sleep

 void makeNoise()

 print name + “ says eeeep”

 }

end Pet

// Dog inherits everything from Pet

// and adds an instance variable

class Dog inherits Pet

 string breed

 Cat * buddy

end Dog

// Cat inherits everything from Pet

// and adds a method

class Cat inherits Pet

 void eat (Budgie * victim)

 print name + “ eats “ + victim.name

 victim.name = “dinner”

 end eat

end Cat

// Cat inherits everything from Pet

// and adds a method

class Budgie inherits Pet

 void fly()

 print name + “ flaps into the sky”

 end fly

end Budgie

void main()

 // p has all the things in the Pet class

 Pet p

 p.name = “generic pet”

 p.age = 0

 p.eat()

 p.sleep()

 p.makeNoise()

// b has all the things in the Pet class and Budgie class

 Budgie b

 b.name = “Tweety”

 b.age = 1

 b.eat()

 b.sleep()

 b.makeNoise()

 b.fly()

// c has all the things in the Pet class and the Cat class

 Cat c

 c.name = “Kitty McFreckles”

 c.age = 6

 c.eat()

 c.sleep()

 c.makeNoise()

 c.eat(*b)

 // d has all the things in the Pet class and the Dog class

 Dog d

 d.name = “Spot the Dog”

 d.age = 3

 d.eat()

 d.sleep()

 d.makeNoise()

 d.breed = “Hungarian Hamburger Hound”

 d.buddy = *c

 // error: no access to things in other classes we did

 // not inherit from

 b.breed = “flying dogbird?” // Budgies don’t have breed

 c.fly() // Cats don’t have fly

 d.eat(*b) // dogs don’t have eat for Budgie parameter

end main

When we have inheritance in our class design, we say that the class inherited from is the

superclass or parent class and the classes that inherit from it are the subclasses or child classes.

Each subclass inherits everything that was in the superclass, but notice that they do not inherit

everything in every class – Dog isn’t inheriting what Cat has, only what Pet has.

When we are designing the classes for our program, we may have figured out that two classes

have a relationship but we’re not sure whether it is better to represent that relationship

through inheritance, or just having an instance variable. We use the terms IS-A and HAS-A to

help identify which it should be: if we would describe the relationship as IS-A, then it should be

inheritance; if we would describe it as HAS-A, it should be an instance variable.

A dog has a cat buddy – HAS-A: Dog should have an instance variable for a Cat

A dog is a type of pet – IS-A: Dog should inherit from Pet.

Sometimes when programmers are learning to program with object orientation, they are

tempted to create lots of inheritance relationships just when they want to access variables or

methods from one class inside another. Part of the point of object orientation is to make a

complex program easy to understand, so we should only have inheritance between classes if

that correctly represents our understanding of the relationship between them, that one is a

more specific version of the other. If the way the relationship between the classes is written

isn’t helping us understand the program, then our object oriented design isn’t doing a good job.

So far we have only had a superclass and some subclasses, but often the relationships between

the classes identified in our overall program design involve multiple layers, and a class that is a

subclass of one class needs to also be a superclass to another.

If we add a class FloatingCat that is a subclass of Cat, which is itself a subclass of Pet, it will

inherit everything from Cat, which includes everything from Pet.

// Floating Cat inherits everything from Cat

// which includes everything from Pet

// and adds an instance var

class FloatingCat inherits Cat

 // how far off the floor this cat floats

 double floatingHeight

end Cat

void main()

// b has all the things in the Pet class and Budgie class

 Budgie b

 b.name = “Tweety”

// c has all the things in the Pet class and the Cat class

 Cat c

 c.name = “Kitty McFreckles”

 c.age = 6

 c.eat()

 c.sleep()

 c.makeNoise()

 c.eat(*b)

 // F has all the things in the Pet class and the Cat class

 // and the FloatingCat class

 FloatingCat f

 f.name = “Koshekh”

 f.age = 90008

 f.eat()

 f.sleep()

 f.makeNoise()

 f.eat(*b)

 f.floatingHeight = 4.3

end main

Having multiple levels of inheritance allows us to represent more kinds of relationship and have

finer grained control of which classes share variables and methods. We often picture

inheritance as a tree (in computer science, trees have branches going downward). We might

eventually revise our design to reflect that all dogs have things in common, but there are also

differences between big dogs and small dogs. We might also decide that giant dogs are like big

dogs, except that they can be ridden by babies. We might also decide that we want to have a

Parrot as a valid type for pets, and notice that they have enough in common with our existing

Budgie class that we add a new class Bird as a superclass of both, and have that inherit from Pet

(indicating that in this context, all the birds that matter to our program are pets).

Overriding

In our earlier example, we wrote the methods eat(), sleep(), and makeNoise() in Pet and then

the other classes inherited them. This meant that when we tell a Dog, Cat, or Budgie to eat or

sleep or make noise, they all do it exactly the same way. Sometimes, we need a particular

subclass to change an inherited behavior. In that case we will re-write the body of that

inherited method in the subclass, replacing the version from the superclass. This is called

overriding.

Let’s have Dog override the makeNoise method; going “eeeep” is close enough to the noise our

Cats and Budgies make, but we want Dogs to say “ruff”.

// Dog inherits everything from Pet

// and adds an instance variable

// and overrides makeNoise()

class Dog inherits Pet

 string breed

 Cat * buddy

 void makeNoise()

 print name + “ says ruff!”

 end makeNoise

end Dog

Now, when Cats or Birds are told to eat, they use the inherited version from Pet, but when Dogs

are told to eat, they use the Dog-specific version.

Pet

Cat

FloatingCat

Dog

SmallDog BigDog

GiantDog

Bird

Budgie

Parrot

If we have subclasses of Dog like SmallDog and BigDog and GiantDog, they will all inherit the

overriding version from Dog and say “ruff” although any of them could also override, so we

could decide that small dog’s say “yip” instead and add another override of makeNoise in the

SmallDog class.

In addition to inheriting eat() from Pet, Cat had a special eat(Budgie*) method just for eating

Budgies; remember that having two methods with the same name but different parameters is

called overloading – this is different from overriding – Cats have two eat methods, the inherited

one from Pet, and the overloaded version

void main()

 // p has all the things in the Pet class

 Pet p

 p.name = “generic pet”

 p.eat()

 p.makeNoise() // “generic pet says eeeep”

 Budgie b

 b.name = “Tweety”

 b.makeNoise() // “Tweety says eeeep”

// c has all the things in the Pet class and the Cat class

 Cat c

 c.name = “Kitty McFreckles”

 c.makeNoise() // “Kitty McFreckles says eeeep”

 // d has all the things in the Pet class and the Dog class

 Dog d

 d.name = “Spot the Dog”

 d.makeNoise() // “Spot the Dog says ruff!”

end main

Being able to override allows us to have a set of shared behavior methods among many classes,

but still give each one the flexibility to adjust how they do any of them. It also sets us up for the

biggest concept in object oriented coding: Polymorphism.

Polymorphism

Depending on the actual program, we could have ended up with a lot more in our inheritance

tree for pets: we could add branches to the inheritance tree for reptile pets, and rodent pets,

and insect pets, and fish pets. When we then go to write our main code, we will probably have

some parts where we are only using the methods they all have in common (the inherited

methods). In that case, it is a bit annoying that we would have to re-write the code multiple

times for different classes, when the only difference is the type.

In fact, in languages that support object orientation, we can write the code just once, for type

Pet, and it will work for all the subclasses. Polymorphism means that a pointer variable of a

superclass type can actually hold the address of any subclass type. It can only use variables and

methods that are legal for the variable type, not those that the subclass may have added.

However, when the program runs, any methods called will always be the correct version if the

subclass overrides them.

void main()

 // Pet variable but pointing at a Dog

 Pet * p = new Dog

 p.name = “Fluffy”

 p.sleep() // original sleep method

 // since p is actually a Dog, call override method

 p.makeNoise() // “Fluffy says ruff!”

 // error, pets don’t have a breed

 p.breed = “nope”

 // if we want to do dog-specific code,

// we need a Dog variable

 Dog * d = new Dog

 d.breed = “Beagle”

end main

Polymorphism isn’t used when we want to write code that is specific to a subclass, but it does

give us a way to write code that will work for any subclass, with different behaviors based on

overriding

void main()

 Pet * p

 print “Let’s try a starter pet!”

 String user = prompt "dog, cat, or budgie?"

if (user == "dog") then

 p = new Dog

 else if (user == "cat") then

 p = new Cat

 else

 p = new Budgie

 end if

 // this code works no matter which type they chose

 p.name = prompt "what name?"

 p.age = prompt "how old"

 p.eat()

 p.sleep()

 p.makeNoise() // method called depends on user choice

end main

Now that we have polymorphism, we can make Dog a little more flexible about being friends,

instead of buddy being limited to Cats, we could make it a Pet

class Dog inherits Pet

 string breed

 Pet * buddy

 void makeNoise()

 print name + “ says ruff!”

 end makeNoise

end Dog

void main()

 Dog fluffy

 fluffy.name = “Fluffywuffykins”

 print “Choose a friend for ” + fluffy.name

 String user = prompt "dog, cat, or budgie?"

if (user == "dog") then

 fluffy.buddy = new Dog

 else if (user == "cat") then

 fluffy.buddy = new Cat

 else

 fluffy.buddy = new Budgie

 end if

 // this code works no matter which type they chose

 fluffy.buddy.name = prompt "what name?"

 print “Now they will talk”

 fluffy.makeNoise(); // dog version

 fluffy.buddy.makeNoise() // method depends on user choice

end main

Also note that an array of pointers to a superclass type can hold any subclass types

void main()

 Pet * petList[10]

 // fill the array with various types of pet

 for (int i = 0; i < petList.size; i = i + 1)

if (i % 3 == 0) then

 petList[i] = new Dog

 else if (i % 3 == 1) then

 petList[i] = new Cat

 else

 petList[i] = new Budgie

 end if

 // starter name

 petList[i].name = “Pet #” + (i+1)

 end for

 // this code works for all pets

 for (int i = 0; i < petList.size; i = i + 1)

petList[i].eat()

 petList[i].sleep()

 petList[i].makeNoise() // outcome depends on i

 endfor

end main

Note how simple the loop at the end of this is. There’s no if to check whether we should be

doing a special different makeNoise method for Dogs, it just happens automatically. If we did

more overriding in different classes, the outcome of that loop could be totally different for each

type of pet, but this polymorphic code in main doesn’t have to change at all to reflect this. The

part of the programming team writing the main code doesn’t even have to know whether any of

the subclasses overrode a method from the superclass or not.

Encapsulation

In object oriented design, we divided our program into classes, which are separate but

interacting, and each class holds both data and methods that act on that data. This is called

encapsulation.

In addition to helping us design large scale programs by making the structure of the code reflect

our conceptual understanding of the situation in the program, object orientation helps

programmers be lazier in actually implementing and maintaining code.

Encapsulation divides the program into classes which can be implemented independent of each

other. This allows different programming teams to work in parallel on different classes. It also

means that we can pull classes out of one program and copy them into another program

without having to re-write from scratch. And it means that when we later have to update or

change the code in one class, those changes can be made without having to update all the code

in the other classes.

But to get these benefits from object orientation, we have to follow rules for good object

oriented design, and this means separating a class’ interface from its implementation.

Interface vs Implementation

When creating a class, we should clearly distinguish between the public interface of the class,

which consists of the parts of the class that the rest of the program can interact with, and the

private implementation which is the parts of the class that are not available to the rest of the

program.

The public interface for a class should be part of the initial design, and defines the parts of the

class that other classes may need to use in their code – this is the way other classes can interact

with this class. In general, the public interface of a class consists of a list of methods, some of

which will return data values for the characteristics.

It is important that once a method is put into the public interface, it should not be changed –

not the name, not the return type, not the parameters. Also we cannot remove methods from

the interface. By putting something into the public interface, we are promising that it is a tool

that other classes can freely use, so changing any of this would break another class’ code (which

will probably enrage our programming peers!).

Any part of the class that is in the private implementation can be changed as needed to

improve the code, fix errors, add new abilities, or meet the demands of management. This

necessarily includes the bodies of all methods. It usually includes all instance variables, and it

may include some methods that are not appropriate for use outside the class.

Hiding instance variables in the private implementation gives each class control of those

variables’ values, so no class from the outside can set them to inappropriate values. It does also

allow us to completely hide the value and even existence of an instance variable that needs to

be hidden from the rest of the program for privacy or security reasons.

Object oriented languages may provide keywords such as public and private to explicitly say

which parts of the class are in the public interface vs the private implementation.

class Account

 public string name // public (just for this example)

 private double balance // private (correct)

 // a public method that controls access

 // to a private variable

 public void deposit(double d)

 // don’t allow negative values

 if (d > 0) then

 balance = balance + d

 endif

 end deposit

endclass

void main()

Account * act = new Account

// name is currently public, so can be changed from outside

// that’s [probably a bad idea

 act.name = "Johann Dowe"

 act.name = “stupid customer I hate him”

 act.name = “”

 // error, cannot access private

 // from outside class

 act.balance = -1

 // legal, use the public method

 act.deposit(10)

end main

We can always go into methods and change their bodies to change how they work, which

means we can fix problems, make code more efficient, or improve readability without messing

up other classes that call those methods. Method bodies are automatically part of the private

implementation just because of how methods work.

Accessors and Mutators

Since instance variables are almost always private, it is standard to provide tools that allow

outside classes to interact with them in a controlled way. In general, for each instance variable,

we would provide a method to access the value of the variable, and a method to try to change

the value of the variable.

The method to get access to the value is called an accessor or getter because the method is

usually given a name that puts “get” in front of the name of the variable. Accessors are almost

always very simple: just return the value of the variable.

The method to change the value is called a mutator or setter because the method is usually

given a name that puts “set” in front of the name of the variable. Mutators need a parameter

of the right type for the variable. At simplest they would simply put that value into the variable,

but they might include an if for validation, so invalid values are never allowed to reach the

instance variable.

class Job

 // monthly salary for this job

 private double salary

 // accessor

 public double getSalary()

 return salary

 end getSalary

 // mutator

 public void setSalary(double newval)

 if (newVal >= 0) then

 salary = newval

 end if

 end setSalary

end Job

void main()

 Job myJob

 myJob.setSalary(2700)

 print “you got a 1% raise”

 // new salary is 101% of the old salary

 myJob.setSalary(myJob.getSalary() * 1.01)

 // no effect if we try to set it to a bad value

 myJob.setSalary(-300)

 print “Your salary is: $” + myJob.getSalary()

end main

 At first, adding accessors and mutators for every instance variable may feel like a lot of work,

but actually it is an example of being lazy in a programmer way: we write these very simple

methods in a standard way when we create the program, and this helps insure us against having

to do complex difficult updating of a class later on.

Suppose the Job class in the example above was part of a larger program that you had to

maintain. After the program had been in use for a year or so, management tells you that the

program now needs to do everything in terms of yearly salary (maybe because there was

ambiguity about which type of salary, maybe for legal reasons, maybe just because of

management whim).

So we add a new yearlySalary variable with its own accessor and mutator, but we know we can’t

remove the old accessor and mutator for the old salary variable – putting them into the public

interface means we promise they will always be available.

But if everywhere in the program that had to access the salary went through that accessor and

mutator, then if we just rewrite the bodies of the old accessor and mutator for the old salary

variable to use the new yearlySalary variable, we shouldn’t have to make changes to any other

code to meet the management’s requirements.

class Job

 private double salary

 private double yearlySalary

 public double getSalary()

 return getYearlySalary()/12

 end getSalary

public void setSalary(double newval)

 if (newVal >= 0) then

 setYearlySalary(newval * 12)

 end if

 end setSalary

 public double getYearlySalary()

 return yearlySalary

 end getSalary

 public void setYearlySalary(double newval)

 if (newVal >= 0) then

 yearlySalary = newval

 end if

 end setSalary

end Job

Notice that in the code above, the old salary accessor and mutator are using the new

yearlySalary accessor and mutator. We’re future-proofing again. If next year we have to swap

yearlySalary for something else, we will only have to update the yearlySalary accessor and

mutator.

Interfaces

In some languages, the interface is an explicit structure, which is another means of achieving

polymorphism. We can write our main program as polymorphic code, using only the parts of a

type that are in the public interface, but the actual implementation might change.

In C++ each class is divided into a header, which lists the declarations of the public methods in

the interface, and a separate class file that holds the implementations of these methods. This

means that we could swap implementation files and the behavior of the class would change.

In Java, an interface is a valid type for variables, and multiple classes could implement that

interface, filling in the required methods, but in different ways.

This use of interfaces with polymorphism can lead to code that swaps out different

implementations even during the run of a program, so we can replace one suite of methods

implementing behaviors in one way with another suite that handles the same tasks in a

different way, changing the way the program does these tasks as needed, without having to

write out the different options explicitly in the main code, which might be written separately

from any of those implementations, more of which could be added later as needed.

