
Arrays

Basic variable types give us the ability to store individual numbers, strings, or boolean values,

but for many tasks we have to deal with dozens, hundreds, or thousands of such values. Instead

of creating thousands of individual variables, we can instead use an array structure to hold a list

of values that are all of the same type. Arrays have built-in numbering and we can use this to

easily process values that live in an array using a for loop.

Array Structure

Suppose that we have a list of integer grades that we have to find the average for, and then

print. If we don’t know about arrays, the best we could do is create a variable for each grade,

and name them grade0, grade1, etc. Then every task we want to do with this grades, we have

to manually do line by line:

int grade0 = 67

int grade1 = 71

int grade2 = 99

// ... do grade3 through grade8

int grade9 = 86

double average = 0

average = average + grade0

average = average + grade1

// ... do grade2 through grade8

average = average + grade9

average = average / 10

print "Grades:"

print grade0

print grade1

// ... do grade2 through grade8

print grade9

Note that even in writing out this much, I was too lazy to write every line, I just said things like

“do grade3 through grade8” to indicate that we want to do the same thing to the variable grade

followed by a number that changes. An array gives us a way to number variables in a list, where

the number is a separate part that we can change in order to work our way through the list.

At the hardware level, to create an array we would set out a sequence of rows in Main Memory

to hold our list of values. In many languages, the array itself is assigned the memory address of

the first of these rows, and each subsequent value in the array will be on a new row1. So we can

think of each position in the array as an offset from that first row. The first value is offset by 0,

the next value is offset by 1, etc.

In programming languages, we use these numbers, indicating how many rows down to move in

the array, as the array index, which is always an integer value. We will use square braces to

surround the index, at the end of the name of the array. Indices2 always start at 0.

The list of values in the array are its elements.

To create an array, we have to say how many rows in memory to reserve for the whole list of

elements. We also use square braces around this number when we create the array.

// declaring an array

type arrayVariableName[sizeOfArray]

// putting a value into an array at an index

arrayVariableName[index] = valueForElement

Let’s rewrite the code above, using array syntax:

// declare an array of ints called grades, which is size 10

int grade[10]

grade[0] = 67 // put 67 in 0th row of the grades array

grade[1] = 71 // put 71 on 1th row of the grades array

grade[2] = 99 // put 71 on 2th row of the grades array

// ... do grade[3] through grade[8]

grade[1] = 86 // put 86 on 9th row of the grades array

double average = 0

// add the value from the 0th row of the array

average = average + grade[0]

// add the value from the 1th row of the array

average = average + grade[1]

// ... do grade[2] through grade[8]

average = average + grade[9]

average = average / 10

print "Grades:"

print grade[0]

print grade[1]

1 Actually, some types of values might take up more or less than a row in Main Memory, so each value in the list
might be stored two rows down from the previous, or only half a row over. But even if it is only half a row, it is still
in programming always represented as an integer unit, representing the size of the type.
2 This is the plural of index.

// ... do grade[2] through grade[8]

print grade[9]

Array Index

Notice the somewhat odd wording I used, I called grade[0] the 0th row and grade[1] the 1th row.

Talking about the “first” row of an array can be ambiguous: do I mean the very first one, which

is at offset 0, or the first one as in the one numbered “1” which is actually the second row in the

array, offset by 1? Because of this, people have come up with different ways to refer to the rows

such as 0th and 1th 3 or always saying “index 0” and “index 1” or “offset 0” and “offset 1” etc.

When talking about code, we generally just say the name of the array followed by “sub” then

the index so “grade sub 0” to mean grade[0] or “grade sub 1” to mean grade[1] or even leave

out the sub and just say “grade 0” to mean grade[0] and “grade 1” to mean grade[1]

Because index always starts at 0, the last index in the array is always 1 less than the size we

created the array at. We initialized grade with size 10, so grades runs from index 0 to index 9 –

it takes up 10 rows, but those rows are numbered 0..9.

I was able to do math using the elements of the array and print the elements of the array, just

like any other integers. At the moment variable names like grade[3] look strange because they

are new, but they really are just variable names, and I can do anything with grade[3], an integer

that lives in an array structure at index 3, that I could have done with an integer variable grade3,

an integer that lives in an individual variable.

Using Values in an Array

So far, changing to array format hasn’t bought us anything, we’re still manually moving through

just as many lines of code. This will change when we start using for loops with arrays. Let’s look

at a few more array examples first

// declare variable rents as an array that holds 10 double

values, indices 0 to 99

double rents[100]

// put the value 1560 at index 0 in the rent array

rent[0] = 1560.00

// ... fill in rent[1] to rent[89]

// put the value 1290 at index 99 in the rent array

rent[99] = 1290.00

// using a variable to hold the index

3 Or aloud, pronouncing 1st as “one-st” to indicate index 1.

int myAptNum = 67

rent[myAptNum] = 1350.00

//same as

rent[67] = 1350.00

// my rent is stored on row 22

// and I have to pay $132 in utilities

double monthTotal = rent[22] + 132.00

// declare variable petNames as an array

// that holds 15 string values

// indices 0 to 14

string petNames[15]

// put the value “Fluffy” at index 0 of the petNames array

petNames[0] = “Fluffy”

// . . . fill in petNames[1] to petNames[13]

// put the value “Spot” at index 14 of the petNames array

petNames[14] = “Spot”

//my pet is on row 4 and I am printing about a vet

appointment

int x = 3

print petNames[x + 1] + “ has a vet appointment on May 3.”

// declare variable catCanFly as an array

// that holds 5 boolean values

// indices 0 to 4

boolean catCanFly[5]

// put the value true at index 0 of the catCanFly array

catCanFly[0] = true

// . . . fill in catCanFly[1] to catCanFly[3]

// put the value false at index 4 of the catCanFly array

catCanFly[4] = false

// get which row their cat is on and then

// advise them on what activity to do

int catIndex = prompt “what index is your cat at in the

array?”

if (catCanFly[catIndex]) then

 print “Go ahead and take your cat flying”

else

 print “Just play with your cat on the ground”

endif

Since the array index is always an int, no matter what type is in the array, we can use literal int

values, or anything at evaluates to an integer, like an int variable or an expression, in the square

braces to indicate which row in the array we want, which we did in the above code.

CS Numbers vs Human Numbers

At the end of that code, we asked the user for the array index to use. Most of the time, users

would be confused by using “computer scientist numbers” that start at 0, so we would adjust

between these and “human numbers” that start at 1 when talking to a user:

// get which row their cat is on

int catIndex = prompt “which cat (1 to 5)?”

// they entered a human number

// subtract 1 to make it a correct array index

catIndex = catIndex -1

// advise them on what activity to do

if (catCanFly[catIndex]) then

 print “Go ahead and take your cat flying”

else

 print “Just play with your cat on the ground”

endif

Array Initialization

Like other variables, different languages have different ways of determining the values stored in

an array when it is first declared. In some languages they must be initialized before being used,

in some languages they have default values, such as 0 for numbers, and in some languages they

contain whatever garbage values happened to be left on those rows in memory the last time

they were used.

For pseudocode examples, we will assume that arrays start with the default values 0 for

numbers, false for booleans, and null for everything else. In many languages, if we know the

values we want for an array when it is created, we can do a special initialization to put them all

into place at once. In our pseudocode, we will do this by putting them into a comma separated

list inside curly braces:

// special initialization

string zooAnimals[5] = {"elephant", "zebra", "hippo",

"penguin", "aardvark"}

// same as saying

string zooAnimals[5]

zooAnimals[0] = “elephant”

zooAnimals[1] = “zebra”

zooAnimals[2] = “hippo”

zooAnimals[3] = “penguin”

zooAnimals[4] = “aardvark”

Array Size

Array structures are static in most languages, not dynamic, which means that whatever size they

were when we created the array, they stay that size and cannot change. Trying to put data

outside the size of the array is a problem. No array has negative indices, and remember that

valid indices in the array always go up to one less than the size.

Suppose we used an invalid index in an array. Depending on the language this could be a syntax

error, or a runtime error that causes the program to halt or this could simply access the row in

main memory at that offset, even though it isn’t actually part of the array, allowing us to

overwrite or read from whatever happens to be in the surrounding parts of memory! This is

very dangerous and has been used in various types of malicious coding.

We know it is never safe to use a negative number as the index, but to avoid the index being too

big, we need to know how big the array is. In some languages, arrays know their own size, while

in others it is the programmer’s responsibility to keep this value in another variable. For our

pseudocode, we will assume that arrays know their size, and that we access it using the name of

the array followed by .size .

// declare variable petNames as an array

// that holds 15 string values

// indices 0 to 14

string petNames[15]

print “there are “ + petNames.size + “ pet names in our

list”

// put “Rover” in the last position in petNames

// which must be its size minus 1

petNames[petNames.size -1] = “Rover”;

For Loops for Arrays

The real power of arrays comes from the fact that we can use a variable in the square braces,

and use a for loop to change that variable. As a result, we can write a for loop to do the same

thing to each element of the array. We want to end up writing code like

// add up all the grades in the array

for (int i = 0; i < grade.size; i = i + 1)

 total = total + grade[i]

endfor

But let’s work our way up to that, to make sure we understand what we’re doing.

First, let’s revisit doing all the steps of an average manually, using array syntax:

// new list of grades using special initialization

int grade[10] = {54, 99, 87, 68, 75, 98, 74, 82, 90, 49}

double average = 0

double total = 0

// go through each grade in the array, adding it onto the

total

total = total + grade[0]

total = total + grade[1]

total = total + grade[2]

total = total + grade[3]

total = total + grade[4]

total = total + grade[5]

total = total + grade[6]

total = total + grade[7]

total = total + grade[8]

total = total + grade[9]

// math for the average

average = total / 10

Since we can use an int variable in the square braces as the array index, we could rewrite the

above as:

int grade[10] = {54, 99, 87, 68, 75, 98, 74, 82, 90, 49}

double average = 0

double total = 0

// variable to use as index

int i = 0

total = total + grade[i]

i = i + 1 // now the index is 1

total = total + grade[i]

i = i + 1 // 2

total = total + grade[i]

i = i + 1 // 3

total = total + grade[i]

i = i + 1 // 4

total = total + grade[i]

i = i + 1 // 5

total = total + grade[i]

i = i + 1 // 6

total = total + grade[i]

i = i + 1 // 7

total = total + grade[i]

i = i + 1 // 8

total = total + grade[i]

i = i + 1 // 9

total = total + grade[i]

average = total / 10

If it makes sense to you that the two versions of the code above do the same thing, now we can

make the big jump forwards: what we want to do are just the two lines

total = total + grade[i]

i = i + 1

over and over. And that’s exactly what a for loop is designed to do! We’ll make i our for loop

counter variable, and update i as part of the for loop. So now we can rewrite the code as

int grade[10] = {54, 99, 87, 68, 75, 98, 74, 82, 90, 49}

double average = 0

double total = 0

for (int i = 0; i < 10; i = i + 1)

 total = total + grade[i]

endfor

average = total / 10

But what if we have more or fewer grades? Well the initialization of the array would have to

change, but the rest of the code wouldn’t get any longer. The only part that would have to

change is the 10, which is the size of the array. But in our pseudocode, we know how to ask the

array itself for that value, so we could do

// grades is an array, we don’t know how big

int grade[] = getGrades()

double average = 0

double total = 0

for (int i = 0; i < grade.size; i = i + 1)

 total = total + grade[i]

endfor

average = total / grade.size

This time I assumed I had a method that would create the grades array for me. Since we don’t

know the size of the array, the square braces when we declare the array are empty. Without

knowing the size, we were still able to have the rest of the code, without it getting any longer,

and it will still work even if there are 100 or 1000 or more grades.

When we need to solve a problem involving an array, the answer is almost always to use a for

loop, and that for loop almost always has the form

for (int i = 0; i < arrayVariable.size; i = i + 1)

 do something using arrayVariable[i]

endfor

So let’s print the elements of the grades array, but number them… if we are printing for a user

to see, remember that we want to print using human numbers, not CS numbers, so we will need

to increase the number when we print

for (int i = 0; i < grade.size; i = i + 1)

 print “Grade #” + (i + 1) + “: “ + grade[i]

endfor

It’s the same for loop, and inside the thing we are doing with grade[i] is printing it, with some

nice formatting, including adding 1 to the index, so we get something like “Grades #1: 54” etc.

Searching Arrays

Arrays give us a way to save large lists of data. Sometimes we want to just process every

element, but sometimes we want to know if an array contains a specific value, and if so, where

in the array (at what index) that value occurs. For simplicity we will assume that either the

value only appears once or that we are always interested in the first copy of a value.

Just Finding if a Value Is In The Array

Suppose that we want to know if there is a 0 in our array of grades. If we just need to report

whether or not it is there at all, we could say

int grade[] = getGradeList()

// flag for whether we found a zero

boolean found = false

for (int i = 0; i < grade.size; i++){

 // check whether the current value is 0

 // if so, update the flag

 if (grade[i] == 0) then

 found = true

 endif // no else here!

endfor

// once we are done checking the whole array, report the

result

if (found) then

 print "found a zero"

else

 print “no zeroes found”

endif

We used a boolean called found to record whether or not we found a zero. Using a for loop as

usual, we checked each element of the array. If the current element was a zero, we updated the

found variable.

Notice that there is no else on the if inside the for loop. If the current element grade[i] is zero,

then we want to update our boolean to true. But if it isn’t, does that mean we should do

something else? Update the boolean to false? NO! If the current element isn’t zero, that just

means we haven’t found a zero so far. We still have the rest of the array to search.

In fact, adding an else that sets the boolean to false would be a disaster! If we haven’t found

our zero yet, then the boolean is still false, so setting it to false would be a waste of time. But

what if we found the zero, set found to true, and then looked at the next number, which isn’t

zero… we’d be setting it back from true to false and losing our information!

The only time we can reasonably have an else, to report whether it was there or not, is after we

have checked the entire array.

Note that, if we really are only interested in the first occurrence, or know that there is only one,

then we don’t actually need to keep searching once it is found. So we could adjust the loop

condition so that we stop once it is found.

int grade[] = getGradeList()

// flag for whether we found a zero

boolean found = false

// goes through whole array but stops if found

for (int i = 0; i < grade.size && NOT found; i++){

 // check whether the current value is 0

 // if so, update the flag

 if (grade[i] == 0) then

 found = true

 endif // no else here!

endfor

// once we are done checking the whole array, report the

result

if (found) then

 print "found a zero"

else

 print “no zeroes found”

endif

Finding the Location of a Value

Suppose we want to know where in the array a value occurs.

int grade[] = getGradeList()

// let the user choose a value to search for

int seeking = prompt "What value to find?"

for (int i = 0; i < grade.size; i++)

 if (grade[i] == seeking) then

 // i is the index in the array where we

 // found the value, report it if found

 print "found a " + seeking + " at position " + i

 endif

endfor

In this case instead of just searching for zero, we made our code more general by getting a

value, seeking, to search for from the user. Our loop looks much the same, but this time we

said not just that we had found it, but the position in the array where we found it, i. Remember

that i is a computer science number; if we are really going to print to a user, we might want to

print (i+1) instead. But actually, when searching for a location, we often want to store that in a

variable to use later in the program:

int grade[] = getGradeList()

int seeking = prompt "What value to find?"

int foundAt // index position in the array

boolean found = false // whether we found it

for (int i = 0; i < grade.size && NOT found; i++)

 if (grade[i] == seeking) then

 foundAt = i // store the position

 found = true // store that we found it

 endif

endfor

if (found) then

 print "found " + grade[foundAt] +" at "+ foundAt

else

 print seeking + “ not found”

endif

In this version, we used the foundAt variable to store the index where we found the seeking

value, so that it would be available after the for loop. We also used the found variable so that

we would know whether we found it or not.

Finding Location and Recording Success in One Variable

It is much more common, instead of using both an int for position and a boolean, to just use the

int. We can simply set the int to an impossible value for an index to start with, and if it still has

that value after the loop ends, we know we must never have found the value. The standard

value to indicate something was not found is -1, since that is not a valid index for any array:

int grade[] = getGradeList()

int seeking = prompt "What value to find?"

int foundAt = -1 // position starts with impossible value

// for loop goes through whole array

// but stops early if foundAt ever changes

for (int i = 0; i < grade.size && foundAt == -1; i++)

 if (grade[i] == seeking) then

 foundAt = i

 endif

endfor

// after loop, if foundAt is still -1 it was never changed

// so we never found it; if we did change it, it was found

if (foundAt != -1) then

 print "found " + grade[foundAt] +" at "+ foundAt

else

 print seeking + “ not found”

endif

We started foundAt as -1. If we found the value we were seeking, we changed it to the current

value of i. We can then use whether foundAt is still -1 both to help us end the for loop early and

to check after the loop whether we found it.

Parallel Arrays

Each array can only store one type of data; we can have an array of ints and separately an array

of strings, but one array can’t store both ints and strings. If we have multiple lists of different

types that are associated with each other, we can set them up as parallel arrays: multiple arrays

of the same length where we use the same index across all arrays to group data.

Suppose that in addition to the array of grades, we have arrays of the first and last names of the

students with those grades. Since there are the same number of first names and last names

and grades, the arrays will be the same size, and we can use the same index to indicate the

same person, grouping their first name, last name, and grade. So if we say:

int grade[10] // grades of students

String fNames [10] // first names of students

String lNames [10] // last names of students

fNames[0] = "Jan" // student #0’s first name

lNames[0] = "Smith" // student #0’s last name

grade[0] = 85 // student #0’s grade

// all info about student #1, in three arrays

fNames[1] = "Dan"

lNames[1] = "Jones"

grade[1] = 90

// Stan Melchizadek got a 99

fNames[2] = "Stan"

lNames[2] = "Melchizadek"

grade[2] = 99

We are saying that there is a student whose name is Jan Smith whose grade is 85 – since all

those values are at position 0 in their respective arrays, they go together. Similarly, Dan Jones

got a 90 and Stan Melchizadek got a 99. You could think of the parallel arrays as each being a

column in a table, and each index indicating a row in that table with all the information about a

student.

Since parallel arrays must be the same size, we can use a single for loop to go through them all

at the same time:

// use special initialization to create parallel arrays

int grade[] = {85, 90, 99, 80, 73}

string fNames[] = {"Jan", "Dan", "Stan", "Nan", "Ann"}

string lNames[] = {"Smith", "Jones", "Melchizadek", "Brown"

"Whitley"}

// for loop can go through all three arrays at once

// since they are lined up and all the same size

for (int i = 0; i < grade.size; i = i + 1)

 print fNames[i] + " " + lNames[i] + "has " + grade[i]

endfor

If we search one array to find the position of a value, we can use the index we found to look up

the related information in the parallel arrays. For instance, if we look up the last name of a

student we can find the matching first name and grade.

// assuming we set up the three arrays already

string lookFor = prompt "Look up what surname?"

int foundAt = -1

for (int i = 0; i < names.size; i++)

 // finding the location of the last name

 if (lNames[i] == lookFor) then

 foundAt = i

 endif

endfor

// whichever position we found the last name,

// the matching first name and grade will be at

// the same position, in the other arrays

if (foundAt != -1) then

 print fNames[foundAt] + “ “ + lNames[foundAt] + " has

grade " + grade[foundAt]

else

 print "No such student"

endif

Parallel arrays do rely on carefully maintaining the size and locations of data. If one of our

arrays has data in the wrong order, everything breaks. When we learn about object orientation,

we will learn how to group related data values into a single structure, and we can have single

arrays of those programmer-created types instead of relying on parallel arrays.

Arrays with FirstEmpty

Arrays are almost always a static sized data structure, which means that we have to choose the

size of the array when we create it, and we cannot change the size later, we can only make a

new array of a different size, and copy the data into the new one. For this reason, we may have

to create an array larger than the data we start with and add to it as the program runs; if we

don’t know how much data we will be dealing with, we will usually err on the side of making the

array too large, because wasting some space is better than wasting a lot of time copying

elements from one array to another.

Suppose we have an array that is already partially full, and a new value has just come in. We

want to store the new value in the array, but not at a position where we have already stored a

previous value.

One option would be to loop through the array until we find an empty spot… but there are

several reasons this is a bad idea. First: how do we know whether a spot is empty? If the array

started with default values such as 0, false, or NULL, we could check for those, but false is

almost certainly a valid possible value for a boolean array element, 0 is likely to be valid for a

number, and NULL might well be valid for any other type. We are back to the problem we had

with sentinel values: this only works if there is some value that is not valid data.

But even if we do have some value we can use to indicate empty spots, looping through the

array to find the first such spot every time we want to add is an enormous waste of time. When

we measure the time for a program to do a task, we measure not in terms of seconds elapsed,

but based on how the number of steps is related to how much data. Suppose we are working

with 10 data values in our array. Each time we search the array we have to look at on average

(1/2)*10 items, and we have to do this 10 times. If it were 1000 values, it would be (1/2)*1000,

done 1000 times. So in general, if we are faced with n values, we have to do (1/2)*n steps, n

times.

We usually ignore the constant coefficient at the front; for instance, if we are actually doing 8

lines of code to process each value or 3, that number gets dwarfed by the number of values. So

we ignore the (1/2) and just simplify this down to saying: doing it this way costs n*n = n2 steps.

That’s not great if n is 10. That’s bad if n is 1000. That’s catastrophic if n is a million.

Especially when I tell you that we can get the same result in just n steps, if we use one extra int-

worth of space:

We will keep an int variable like a sort of bookmark for the first spot in the array that is not

currently occupied: the first empty index. We often call this variable something like firstEmpty

or firstEmptyIndex or fei. Since array indices are always ints, it is always an int.

Suppose we are getting names from the user, and filling an array using a firstEmpty.

// the array so far, partially full

string nameList[] = getNameList()

// the firstEmpty so far

int firstEmpty = getNameListFEI()

constant string QUIT = “QUIT”

string username = prompt “what name? “ + QUIT + “ to quit”

// while the user doesn’t quit

// and there is still space in the array

while (username != QUIT AND firstEmpty < nameList.size)

 // put the new name at the current first empty spot

 nameList[firstEmpty] = username

 // update firstEmpty so next name goes at next spot

 firstEmpty = firstEmpty + 1

 // get name from the user

 username = prompt “what name? “ + QUIT + “ to quit”

endwhile

// if we ran out of space,

// let the user know that’s why we quit

if (firstEmpty >= nameList.size) then

 print “ran out of space”

endif

The heart of this code is just putting the user name at the firstEmpty index in the array, and then

incrementing the firstEmpty index, since that spot in the array isnt’ empty anymore. In this

case, we were reading multiple names in a loop, so we used a while loop, but notice this is one

of those rare cases when solving a problem with an array does not need a for loop! If we had

been searching for the first empty spot, instead of using an int to keep track of it, that would

have needed the nested for loop, which would have taken the very slow n2 time.

Notice that we did check each time whether the firstEmpty had fallen off the end of the array by

checking it against the array’s size. If we run out of space, then we either have to give up, or

create a new, larger array, copy all the elements from the old array into the new, and continue

from there (slow!).

We put these values into the array because we have some use for them. If we need to process

the values in our array we need to go through all of them, and that brings us back to a for loop,

but when we have an array with a firstEmpty, we don’t always want to process the whole array.

There could be a bunch of empty spots at the end of the array that we don’t want to include in

whatever process we are doing. So, the for loop for dealing with an array that has a firstEmpty

has a condition that compares the counter to the firstEmpty, not to the size of the array:

// the array so far, partially full

string nameList[] = getNameList()

// the firstEmpty so far

int firstEmpty = getNameListFEI()

// print the students in the array

// but not the empty spots at the end

for (int i = 0; i < firstEmpty; i = i + 1)

 print “Student #” + (i + 1) + “. “ + nameList[i]

endfor

Copying and Resizing Arrays
To copy an array, we must make a new array of the same size, and copy each element

// the original array

string original[] = getOriginalArray()

// the new array to copy into

// same size as original

string destination[original.size]

// these arrays function like parallel arrays

// so we can use one loop to go through them

for (int i = 0; i < original.size; i= i + 1)

 destination[i] = original[i]

endfor

If we planned poorly and ran out of room in our array, we can’t make the array bigger so we

need to make a new, larger array and copy all the elements over. One good guideline is to make

the new array twice the size of the old.

// the original array

string original[] = getOriginalArray()

// the new array to copy into

// twice the size of original

string destination[2 * original.size]

// still just one loop, but we must use

// the smaller size, we are not affecting the

// larger array, just leaving the rest of it empty

for (int i = 0; i < original.size; i= i + 1)

 destination[i] = original[i]

endfor

// if we did this because we ran out of space, but need to

continue working with the “same” array, we might as

well move the new array into that old variable

original = destination

Notice that if we were doing this for an array with a firstEmpty, the firstEmpty doesn’t need to

change. If it reached the size of the original array, that’s okay, because that’s now a valid index

in the new bigger destination array and we can go on adding to it.

Multidimensional Arrays
In most languages, we can have an array where the elements are other arrays. In this case we

just apply all the rules of arrays, twice – we have an array of arrays. We use two sets of square

braces for two indices. In our pseudocode, we will assume the first set of square braces is the

index in the array of arrays (which sub-array we want) and the second set of square braces is

the index in that sub-array (which actual value we want). We can picture a 2-dimensional array

as a table with rows and columns (we can picture the sub-arrays as the rows or the columns, as

long as within a given program we are consistent).

Let’s picture a 2-dimensional array of ints

int numtable[2][3]

numtable[0][0] = 5

numtable[0][1] = 10

numtable[0][2] = 15

numtable[1][0] = 7

numtable[1][1] = 14

numtable[1][2] = 21

We could picture this as the table

 [0] [1] [2]

[0] 5 10 15

[1] 7 14 21

Storing a table of values is the most common use of a 2-dimensional array.

Anytime we need to process a 2-dimensional array, we need a for loop to go through each array

(in this case, each array of ints) and a for loop to make sure we go through all of these arrays in

our array of arrays. Therefore, we need nested for loops:

// go through the array of arrays of ints

for (int i = 0; i < numtable.size; i = i +1)

 // go through each int in the current array

 for (int j = 0; j < numtable[i].size; j = j + 1)

 print numtable[i][j]

 endfor

endfor

Note that since numtable is an array of arrays, each element in numtable[i] is an array, so it also

has a .size in our pseudocode. In less-friendly languages, we would have to keep track of that

size in a separate variable. Because we set up this array to be 2 arrays of size 3 each, they are

actually all the same, but what if we do this:

// some individual arrays

int firstRow[] = {1, 2, 3}

int secondRow[] = {1, 2, 3, 4, 5, 6, 7, 8, 9}

int thirdRow[] = {1, 2, 3, 4, 5}

int numtable[3][] // set up array of arrays with room for 3

arrays (but no arrays in it yet)

// put the arrays in the array of arrays

numtable[0] = firstRow

numtable[1] = secondRow

numtable[1] = thirdRow

 This array doesn’t make such a nice table, the rows are all different lengths. But remember that

arrays help us when our data is a list of the same type. If our data is a list of lists, an array of

arrays may be useful, even if it doesn’t look like a nice table, and we can still use nested loops to

process it.

Arrays don’t stop at 2 dimensions; we could have an array of arrays of arrays, and so on, just

adding extra square braces. But unless we are dealing with data that is intrinsically

multidimensional, such as a cube-shaped table of values, these are of limited use, particularly

since everything in the table has to be the same type.

