
Conditionals

Conditionals will allow our programs to make choices rather than always doing exactly the same

sequence of statements. The most common conditional is if, which can be used to choose

whether or not to do a sequence of statements in the code, and is sometimes used with else,

to choose between doing one or the other of two sequences. A conditional will check a

boolean value and do one thing if the value is true, something else if the value is false.

Booleans

The boolean type to is used to store data about whether something is true or not, which we

sometimes think of as Yes or No. Under the hood, we can use a single binary bit to store off/on

to represent 0/1 or no/yes or false/true.

In our pseudocode, we will write the possible literal values of booleans as false and true.

In some cases, we would create a boolean variable and set its value directly to establish

whether something is true

boolean dogCanFly = true // magic dog, yay!

boolean movieIsScary = false

However, it is very common for booleans to get their values from expressions instead of being

directly set like this.

Boolean Expressions

A boolean expression is an expression that is evaluated and comes out a single true or false.

Boolean expressions are usually written using relational operators to check for equality, greater

than, less than, etc. We may then use logical operators to combine multiple Booleans, for

instance using AND to require that two booleans are true at the same time.

A relational operator is used in an expression between two values of the same type, and this

expression evaluates to either true or false. Our standard relational operators are

used in pseudocode called true when
a == b “equals equals” a and b hold same value
a != b “not equals” a and b hold different values
a > b “greater than” a holds a larger value than b
a < b “less than” a holds a smaller value than b
a >= b “greater than or equal to” a holds a value larger or same as b
a <= b “less than or equal to” a holds a value smaller or same as b

Note that each expression has an opposite which is true when it is false and false when it is

true. a == b is true when a != b is false and false when it is true. The opposite of a > b is a <= b

and the opposite of a < b is a >= b.

Our standard logical operators are

used in pseudocode called true when
!p

NOT p

¬p

“not” p is false

a && b

a AND b

a ∧ b

“and” both a and b are true

a || b

a OR b

a ∨ b

“or” a is true or b is true or both are true

We use NOT to swap between true and false. NOT in front of a false value comes out true, and

NOT in front of a true value comes out false.

We use AND when we want two things to be true at the same time. We use OR when we need

at least one of two things to be true.

These operators give us the ability to combine multiple requirements that we want to check all

in a single boolean expression.

Truth tables are one way of seeing the behavior of an expression with logical operators. A truth

table lays out a row for each possible combination of the individual Booleans involved and then

shows how the whole expression comes out. Here is the truth table for NOT

A NOT A

true false

false true

Since NOT only acts on one boolean, it is a very small table, just showing that the outcome of

using a not is the opposite of the value started with.

Here is the truth table for AND:

A B A AND B

false false false

false true false

true false false

true true true

The table shows that an AND expression is false in every case except where both elements are

true at the same time.

Here is the truth table for OR:

A B A OR B

false false false

false true true

true false true

true true true

The table shows than an OR expression is true in every case except where both elements are

false.

When writing longer boolean expressions it is important to know how these operators interact.

The most important rules are DeMorgan’s laws about the interaction between NOT and AND

and OR. The overall guideline is that a NOT in front of another operator can be distributed to

each operand, and then swaps the operators between AND and OR.

So,

NOT(a AND b)

is the same as

(NOT a OR NOT b).

This should make sense if you think about it: the opposite of “both of these are true” is “at least

one of these are false.”

Similarly,

NOT (a OR b)

is the same as

(NOT a AND NOT b).

This should also make sense: the opposite of “at least one of these is true” is “both of these are

false”

These are often useful when you can easily describe the situation you don’t want, but you are

using a tool like an if that checks its condition for true, so we need to write accordingly.

If I have actions to do, but I can’t do them if it is above 90 degrees and there are any raccoons

present, I might think of it as (temp > 90 AND raccoon_count >0) but actually, I want to check

not for this bad case, but for the opposite. So the good case is

NOT (temp > 90 AND raccoon_count >0)

We can re-write this using DeMorgan’s laws as

NOT (temp > 90) OR NOT (raccoon_count >0)

If we think about how relational operators work, the opposite of > is <=, so this can also become

temp <= 90 OR raccoon_count <= 0

Note that all of these ways of writing the condition are legal and valid. We should choose the

one that most clearly expresses the way we are thinking about the situation.

If

the if structure uses a boolean to determine whether or not to execute a sequence of

statements in code. An if is always looking for its boolean to be true. In our pseudocode we

would write

statements to do no matter what

if (boolean_condition) then

statements to do if the condition is true

often called the “body” of the if

endif

statements to do no matter what

Represented as

The statements inside the if structure, often called the body of the if, will be run if the boolean

condition has the value true, but skipped if the boolean condition has the value false

(remember that a boolean has no third option).

The condition in the parentheses of the if could be a single boolean variable, or a boolean

expression.

For example, if we already have variables for whether the submission was late, for the fee, and

for the current balance, and we are deducting a fee from the balance as a penalty for late

submissions, we could say:

if (submission_is_late) then

 print "Late Penalty: $" + FEE

 funds = funds – FEE

endif

The condition is in bold. We are assuming it is a boolean variable, so it either holds the value

true or false. If it is true, we will print a message and deduct the fee, otherwise we will skip

those statements and go on with whatever is next in the program.

statements to do no

matter what

boolean

condition?

statements to do if the

boolean condition was

true

statements to do no

matter what

true

false

Another example: if we already have variables ponyPrice and funds, and we want to celebrate

buying a pony and pay for it if our funds are high enough to afford the pony’s price, we could

write

if (ponyPrice <= funds) then

 print "Buying a pony yay!"

 funds = funds – ponyPrice

endif

The condition is in bold. Either the ponyPrice is less than or equal to our current funds, or not,

so this expression will evaluate to either true or false. If true, we will print and subtract the

price from the fund, if false, the program will skip those two statements.

If by itself is appropriate in the case when we have a sequence of steps that we either want to

do or skip. This commonly happens if we have code that we want to do, but some requirement

needs to be met (we have enough money to buy a pony) or if we have code that we only have

to do if there is some problem (make the user pay a fee if their submission is late).

If always looks for its condition to be true. We can adjust how we write the condition to fit with

this. Suppose instead of imposing a fee for late submissions, we want to celebrate those that

aren’t late. We can use our logical operator NOT to adjust for this, to check for the opposite of

lateness being true:

if (NOT submission_is_late) then

 print "Thank you for submitting on time!”

endif

If Else

In many cases when our programs make choices, we arent just choosing whether or not to do

something, we instead have two options, and we want to do one or the other. In that case we

would pair the if with an else. Now we will have one sequence of statements in the if, and

another sequence of statement in the else.

The else is checking the same condition as the if, but while the if is checking for true, the else is

always checking for false. Since any boolean expression will always come out to one or the

other, either the if or the else will win. Whichever one wins, we do those statements and skip

the others. We would never have else without if.

statements to do no matter what

if (boolean_condition) then

statements to do if the condition is true

“body of the if”

else

 statements to do if the condition is false

 “body of the else”

endif

statements to do no matter what

To visualize this:

Let’s decide that if we cannot afford a pony, we will go to work to make more money.

if (ponyPrice <= funds) then

 print "Buying a pony yay!"

 funds = funds – ponyPrice

else

 print “No pony today! Let’s go back to work.”

 funds = funds + wages()

endif

Now, if the condition comes out true we will do the two lines in the if, but skip the else, and if

the condition comes out false, we will skip the two lines inside the if and do the else instead.

statements to do no

matter what

boolean

condition?

statements to do if the

boolean condition was

true

statements to do no

matter what

true false

statements to do if the

boolean condition was

false

If always checks for true and else always checks for false, so we could always change the

condition and do them in the other order:

if (ponyPrice > funds) then

print “No pony today! Let’s go back to work.”

 funds = funds + wages()

else

 print "Buying a pony yay!"

 funds = funds – ponyPrice

endif

This has exactly the same result as the previous. We often choose to write if-else with what we

think is the more likely, or preferable, case in the if position.

Nesting Conditionals

We can have any code inside the body of a conditional (if or else) that we would have anywhere

else in code, including more conditionals, so we could have an if-else inside an if or an if inside

an else (remember that we never have an else without an if). This allows us to say that we will

only check for something in the case that we have already checked for something else. This is

also a way to have a check for two things at once (we could also do that with AND).

Here is an example that covers checking all combinations of two conditions.

if (first_condition) then

 statements here only depend on first being true

 if (second_condition) then

 do if both are true

 else

 do if first is true but second is false

 endif

statements here only depend on first being true

else

 statements here only depend on first being false

 if (second_condition) then

 do if first is false but second is true

 else

 do if both are false

 endif

statements here only depend on first being false

endif

Notice that there is only one structure checking first_condition, which we would call the “big if-

else” or the “outer if-else” but there are two separate structures checking second_condition,

which we might calle the “small if-elses” or “inner if-elses”. Also notice that there is space here

for code that is inside the body of the big if-else but not inside the small if-else, where we can

put code that only depends on the first condition.

elseif

It is very common to have a series of possible conditions or values we need to check, with a

different behavior for each. We would check for the first one, then if that fails check the next,

and so on. In that case, we could write a deep nesting of if-else structures:

if (first_condition) then

 behavior for first condition

else

 if (second_condition) then

 behavior for second condition

 else

 if (third_condition) then

 behavior for third condition

 else

 behavior if none of those conditions holds

 endif

 endif

endif

This works, but writing it in this way implies that the first condition is the most important, and

each subsequent condition is less important or less likely. If they are simply a set of equally

important options, most languages allow us to simplify the code by writing an else with an if

immediately after it, or having a keyword elseif that has the same result:

if (first_condition) then

 behavior for first condition

else if (second_condition) then

 behavior for second condition

else if (third_condition) then

 behavior for third condition

else

 behavior if none of those conditions holds

endif

This visually implies that while we chose to check first-condition first, these options are roughly

at the same level or importance or likelihood. It is also shorter and most people find it easier to

read.

Notice that this example ends with an else. If none of the conditions we checked for holds, we

will do the else.

If instead we ended with an else-if, then there would be the possibility that we would do

nothing at all for this code, if nothing we checked turned out true. Sometimes that is what we

want

if (x >=0 AND x < 10) then

 print “one digit number”

else if (x < 100) then

 print “two digit number”

else if (x < 1000) then

 print “three digit number”

endif

// when x is negative or >= 1000 we just don’t do anything

If the conditions are related and together cover all possibilities, we almost certainly want to end

with an else which covers the last possibility.

if (age >=0 AND age < 18) then

 print “child ticket”

else if (x < 65) then

 print “adult ticket”

else if (x < 150) then

 print “senior discount”

else // means x is in none of the above categories

 print “invalid age, check ID”

endif

We earlier had code to check for all combinations of two conditions. If we want to check for

two conditions at the same time, we could also use our logical operators. Here is code to check

for all possible combinations of two booleans, using if-elseif structure:

if (first_condition AND second_condition) then

 print “both are true”

else if (first_condition) then

 print “first is true, second is false”

else if (second_condition) then

 print “first is false, second is true”

else // means x is >= 1000

 print “both false”

endif

Note that we didn’t have to check for first_condition AND NOT second_condition for the case

where first is true and second is false: if both were true, we would have stopped in the first if, so

we know at least one is false when we get to the first else-if. So if we check first_condition and

it is true, then it must have been second_condition that was false. Same holds for the second

else-if. The last else doesn’t need to check for them both being false; again, if we know we are

covering all possible cases, we can just end with an else to cover the only case we haven’t

checked yet.

If the conditions are totally separate issues we are checking for, then ending in an else-if makes

sense if we know that sometimes none of those situations holds so we have no actions to take.

Case / Switch Statement

When we have a list of mutually exclusive situations that depend on specific values of a single

variable, we have a special conditional structure called a case, or switch statement. in a case

statement, we say which variable we are checking, and then list out some values, and then the

code that we want to execute for each value, until we have listed them all, possibly with an

extra case for default, to cover all other possible values, and then close with endcase.

case variableName

value1 : statements to do if variableName has value1

value2 : statements to do if variableName has value2

value3 : statements to do if variableName has value3

default: statements to do for all other values of

variableName

endcase

In this pseudocode, we are assuming that whichever value we match, we would run only the

statements for that value, and then the case statement would end and go on with the rest of

the program, in the same way that if we run the body of an if, we then skip the else.

In many languages, there is a version of the case statement with fallthrough. This is sometimes

called switch, although “case” and “switch” are also often used interchangeably. Fallthrough

means that we use a special keyword, usually break, at the end of each case to end the

structure there, but otherwise we fall through from the code for that value and continue with

the code for the following values.

switch variableName

value1 : statements to do if variableName has value1

value2 : statements to do if variableName has value2

 but also do these after the code for value1

 break

value3 : statements to do if variableName has value3

default: statements to do for all other values of

variableName

 but also do this after the code for value3

 break

endswitch

Since there was no break after the value1 case, after we were finished with the statements for

value1 we would continue with those for value2; however value2 has a break, so after that we

would stop and leave the switch. Since there is no break after value3, for that value we would

do the value3 specific code, but then continue on to do the code in the default case. Since the

default case is at the end, we would stop and leave the switch then anyway, but it is common to

still put a last break it not make this explicit (and in some languages this is required).

Case statements were very common in programs that had menus where the user was given a

list of options and entered a number to choose what they wanted to do. We could do a case

statement based on the variable we read in from the user and put each behavior next to the

value the user entered, plus have the default case to tell them if they entered an invalid answer.

This kind of program is much less common now except in kiosk situations like gas pumps, but

case statements are still useful if we have a limited list of values and a behavior for each.

Notice that we cannot use case statements to handle ranges of values. if we have the same

behavior for all values from 1 to 10, we would have to type an individual case for each one. in

such situations, we would use if-elseif instead. If we really need the fallthrough of a switch for

some reason, but we start off with ranges, we could use if-elseif to set a new variable to one of

a list of values, and then use that to enter the switch.

