
Programs &

Programming

High Level Programming Languages

Remember that the CPU can only understand its own Machine

Language, the list of binary patterns for the simple built-in

actions it was designed to do. For human convenience, we can

write programs in Assembly Language, which uses codes for

these actions that humans are better at remembering, but that

still requires breaking down tasks into tiny, simple, hardware-

specific steps.

For almost all real programming, we instead use High Level

Programming languages, which allow us to solve problems with

more sophisticated tools than simple arithmetic and moving data

around. They provide data structures – ways of storing data –

and control structures – ways to control what the program does.

Variables are a very simple form of data structure. Instead of

keeping track of main memory addresses, variables allow

programmers to give names to stored data.

The text that makes up a program is sometimes called the code,

and usually is given as a list of separate lines called statements.

In this example, current, toAdd, and total are all variables.

The first two variables are given values (100 and 5), and then the

third gets its value by adding the values of the others together.

These actions are grouped together into a function1 called

findTotal.

Programs written in High Level languages must be translated

down to Machine Language for the program to run. Translation is

very difficult, so high level languages must be fairly simple, much

simpler than languages like English. The rules of a language –

grammar, spelling, etc. – are called its syntax, and each

programming language has its own syntax which must be

followed by the programmer. For instance, in the example

above, part of the syntax is that each statement commanding

something to happen must end in a semi-colon, and the list of

statements that make up a function must be enclosed in curly

braces.

Modern programs are written by teams of programmers working

together, while other programmers may have to maintain and

update them, so it is important that they are understandable

when read by humans as well as by computers. Comments are

notes added to the body of the program for humans to read, but

which are ignored by the computer, and not run as part of a

program. In the example above, a comment begins with // .

1 Similar to functions in Excel.

public void findTotal() {

 int current = 100;

 int toAdd = 5;

 // add up to get the total

 int total = current + toAdd;

}

Creating Programs

The first part of creating a program is to get the requirements.

Although programmers do frequently have their own individual

projects to work on in their free time, in industry they are usually

hired to create a program to meet someone else’s needs. The

process of determining what the program needs to do and how it

should work takes careful communication and negotiation.

Next, some time should be spent designing the program –

thinking through how data and control structures should be used

to solve the problems involved. Then the program can be written

in some particular programming language; writing programs is

often called coding. Most programmers know several high level

languages, and for a particular task choose the one that provides

the most appropriate tools for the task.

When all the code of a program has been written, we still do not

have a program that can be run. It must first be translated into

machine language. This translation is done by another program,

which can only translate if the program was written following the

syntax of the language exactly. If words were misspelled, or

punctuation left out, or words were in the wrong order, then the

translation program will not know how to translate that code.

Instead, it will report a syntax error. The programmer must go

back and re-write the code to fix the syntax error and then try

again.

When all the syntax errors have been fixed, this does not mean

the programmer’s job is done. A logic error (also known as a

bug2) means that the program runs, but does not meet all the

requirements. This may mean that it freezes up, that it gets the

2 In honor of Rear Admiral Grace Murray Hopper, who worked on the first compilers, who

once discovered that a moth in the hardware of an early computer was causing a fault.

wrong results, or that it simply does not do one of the things the

requirements said it should. Fixing logic errors may be as simple

as fixing a typo (e.g., the program added where it should have

subtracted) or may require going back and re-designing, then

writing the code again. Any changes made in this process may

have added new syntax errors, which have to be eliminated

before we can run the program again... and find new logic errors.

For a large and complex program, the job of testing for and

eliminating logic errors takes many passes through this process.

Compiling and Interpreting

There are two standard ways to translate from a high level

language program to a machine language program that can run:

compiling and interpreting. In general, each programming

language is either compiled or interpreted. Any language could

be either compiled or interpreted. Creators of a language tend to

choose one approach or the other depending on which better

matches their goals.

For compiled languages, the original high level language program

is given to the compiler program, which translates the whole of

the program to machine language and saves this translation in a

file called an executable. The executable is then given to the

user, who can run it over and over again.

For interpreted languages, when the user wants to run the

program, they give the original high level language program to

the interpreter program, which translates it a little bit at a time

while running it, every time it runs.

Note that the user would never need to have the compiler for a

program written in a compiled language, only the programmer

needs it; the user can run the program they’re interested in

without needing an additional translation program. For an

interpreted language, the programmer would still need to have

the interpreter, to test their program, but the user needs this

extra program as well.

Since all the translation has been done before the program is run,

programs in compiled languages run faster than programs in

interpreted languages, which have to be translated while they are

run every time they run.

So far, all the advantages seem to be on the side of compiled

language.

To understand the advantages of interpreted languages, consider

that different types of computer have different machine

languages. A Mac will not understand instructions for a Windows

machine, and vice versa.

So, when we compile a program, we are compiling it for a specific

type of computer. If we compile a program for a Windows

machine, that executable will not work on a Mac3. However, if

the program is in an interpreted language, then as long as the

user has the interpreter on their computer, it will interpret into

the correct language for the computer they have. This makes

interpreted programs very portable, making them suitable for use

in web pages which will be used by people on many different

types of computer.

So, if a program is written in a compiled language, we must rely

on the programmer to compile different versions for different

types of computer. This could take extra work, if there are

details of working with a specific operating system that must be

3 Executables can sometimes be run on a different type of computer than they were

compiled for, using a program called an emulator. The emulator is essentially acting like an

interpreter, but instead of translating from a high level language to machine language as

the program runs, it translates from one machine language to another.

dealt with, and will at least mean the programmer needs to have

each type of system to work on. In the case of interpreted

languages, we only need to rely on users getting access to the

interpreter, and don’t have to worry about the programmer

knowing what types of computer will be involved beforehand.

It used to be that programmers sometimes preferred interpreted

languages because they could avoid waiting through very long

compilation processes to test their programs; however now

compilation can usually be done very fast. It also used to be that

compiled programs were always much, much faster than

interpreted, but now interpreted programs in some languages are

almost as fast as compiled4.

4 Now many ‘interpreted’ languages in fact take a hybrid approach, in which the slowest part

of the translation work is done through compilation into an intermediate form, which can

then be very quickly translated to the machine language of a specific kind of machine.

Installing and Uninstalling

When you get a program from a website or store, typically the

first thing you do, before you can run the program itself, is to run

another program, the installer, which sets up the program for

you. An installer is needed for all but very simple programs.

A program’s instructions are stored in the executable5, but

modern programs often have many other helper programs in

separate files, such as spell checkers. They also often have many

data files, such as help documents, templates, and clip art. All

these files must be saved on your computer in the directory tree

structure the program expects, or it will not work. Setting all of

this up can be tedious and error prone.

The operating system also needs to store information about the

program, for instance Windows would need to add it to the list of

programs in the Start Menu. An operating system stores its data

in files called system files, such as the Registry in Windows. It is

possible to manually make changes to system files, but if you

make a mistake, you might mess up the OS’s data badly enough

that it will no longer run.

So, to avoid the tedious and the dangerous parts of setting up a

program, we have the installer do all of this for us.

When we no longer want a program, these changes have to be

undone, which is again tedious and dangerous (even more

dangerous, because other programs may now rely on some of the

files or some of the data in a system file that this program

originally changed. An uninstaller is a program that undoes all

the changes made by the installer that won’t mess up other

5 Or a file of intermediate, partly translated code, for most interpreted languages.

programs. Often, an operating system provides an uninstall

utility, such as Add-Remove Programs in Windows.

End User License Agreements

If you have paid money for a program at a store or on a website,

what you have actually bought is a license— the right to use the

software under specific conditions— but you do not own the

software itself. This is like the difference between getting a

membership for a gym and owning the gym.

The circumstances under which you can use the software are laid

out in the EULA, which you generally do not see until you are

installing the software. You must indicate that you agree to the

EULA before you can finish installing. Once you do so, you are

legally bound to whatever is in this document.

Note that EULAs are typically many pages long but are only

presented in a tiny text box in a small window. Companies are

well aware that almost no one reads these agreements.

Generally, EULAs will set out

 who may use the software — e.g. the purchaser, or their

family, or their household

 how many times it can be installed — e.g. on one computer,

or on up to three computers, or on all computers in a

household

 where it can be used — some software is only licensed for

use in certain countries

 what purposes it can be used for — some EULAs specify that

you can only use the software for non-commercial purposes,

and if you want to use it for making money, you need to buy

a different license

 what you can do with the software — very few EULAs give

you the right to sell or even give the software to someone

else, whether you keep a copy or not.

 the legal responsibility the company has for damage caused

by the software — generally none; if the program destroys

all your data or messes up your operating system, you can’t

sue

EULAs might also give the company the right to.

 use any documents you make with the software, or other

information they gather about you, in their advertising

 own any documents you make with the software outright

 remotely (that is, over the internet) make changes to the

software, to update it

 remotely monitor your use of the software

 control what other software you use on the same computer

 install other software on your computer, possibly without

further notice

Most EULAs, although they may give you less than you expect,

are not actively malicious, but some are.

Types of License

Some software has non-commercial licenses for personal use,

separate commercial licenses, and also site-licenses for

organizations that want to install the same program on dozens or

hundreds of computers6.

An increasingly popular7 approach to software licenses is the

subscription model, in which the user’s access to the software is

limited in time as well. After a certain period, the user is no

longer allowed to use the software, and must pay again. Many

companies now offer yearly subscriptions to their software. In

many cases, they guarantee that you will always have access to

their most recent product, so you don’t have to pay again when

they come out with a new version, but you do have to pay again

when your subscription runs out.

Not all software licenses costs money.

Shareware is software that you can try for free. The EULA in this

case, in addition to the usual content, will cover under what

circumstances you can continue to use the software for free. In

some cases, you can use it for a certain number of days, or a

certain number of uses. After this, you agree to either remove

the software from your system, or buy a new license for long-

term use.

Shareware is essentially a marketing strategy. Software

developers without a large advertising budget can get people

interested in their programs by letting potential buyers try them

for free, in the hope that if they like the software enough, they

will pay to keep using it.

Some shareware licenses allow you to keep using the software,

but it is a limited version without all the capabilities of the full

program, in the hope that eventually you will be tempted to pay

for the missing functionality.

6 E.g. for use on a college campus.
7 With the companies, not with the users, usually.

Nagware is shareware that repeatedly reminds you of the EULA

you agreed to, encouraging you to pay for the permanent or full

version.

Freeware is software that you can use for free. In this case the

EULA does not require you to pay, but may still set out many of

the usual limitations on your use of the software. Often there is a

freeware license for personal use but a paid license for

commercial use.

Open source software is usually freeware, but in addition to the

executable machine language program itself, you get access to

the high level language code the programmer originally wrote, so

that if you are yourself a programmer you can make changes to

it, learn from it, or possibly incorporate parts of it into your own

programs.

It may seem odd that programmers would give away software

(which takes many, many hours of work to create). Many people

are suspicious and believe that any free software must contain

malware8. However, the vast majority of free software is

harmless, and some of it is very good. Since a programmer can

read the original code for open source software, they could detect

if it contained malware or was doing something malicious, so

open source software is usually relatively safe.

In general, programmers tend to really enjoy programming, and

work on their own programs as a hobby after programming all

day at work, and they often like to show off their work, which is

one reason for giving software away. Many programmers also

have a sufficiently secure life (relatively well-paid, steady work)

that they can afford to give work away simply to be nice.

8 malicious software, such as viruses

The Open Source movement in software works toward making

more open source software available. Some programmers are

frustrated or dissatisfied by the commercial software available,

either because it is not affordable, not reliable, or because it does

things without the user being aware of them (such as sending

information remotely back to the company). So they write their

own and release it as open source. The hope is that this will both

make good software available to more people, and let

programmers learn from each other so they can make even

better software.

EULAs for open source software tend to give the user a lot of

choice of what to do with the software (though there may still be

limits, for instance it may require that if you reuse part of their

program in yours, then your program will be open source as

well). This is a principle called “free as in speech.” That is, the

user is given a lot of freedom in what they can do. Open source

software is almost always freeware as well. Freeware is “free as

in beer” that is, the user is not required to pay for it, but not

always free as in speech.

Patches and Updates

After software is released – that is, when it is being sold or given

away – it may still not work perfectly9. With so many people

using the software, problems the programmers never found start

to show up, and customers start to complain about these bugs.

9 Actually, it certainly will not work perfectly.

Once they know what the problem is, the programmers find what

part of the program is causing the problem, and can fix it. But

how can they get the fix to the customers? Instead of having

everyone download the whole executable program again, most

companies create a patch. A user downloads the patch, and the

patch replaces just the instructions that caused the problem with

the corrected instructions, leaving the rest of the executable

alone.

As more problems are found, more patches are released. A

customer who comes along later may be faced with dozens of

patches to be downloaded as soon as they install the program.

To streamline the process (and to de-emphasize the number of

problems that needed to be fixed) companies often package

many patches up into a single download called a service pack.

A patch may fix an existing error, but might also introduce new

errors accidentally. Some companies use patches to give their

programs new features. Occasionally companies may use a patch

to remove a feature (for instance, if they are being sued for using

open source code in their commercial software, breaking an

EULA).

When software receives an update, that often means that a new

version of the executable has replaced the old, instead of the old

version just being patched. However some companies use

“update” to mean the same thing as “patch.”

Beta Testing

Companies try to limit the number of bugs in the programs they

release. The programmers test the program as they create it,

but many companies also use beta testers.

A beta tester tests out the program before it is released, and tries

to find bugs the programmers missed. Programmers know what

their program is supposed to do, and how people are supposed to

use it. Good beta testers are good at thinking up bizarre things

to try, to see if they can get the program to go wrong by doing

things the programmer never expected.

Just being told there is something wrong with a program is not

terribly useful. Details are important, so good beta testers are

also good at telling the programmers exactly what they did —

including what type of computer they were working on, what

other programs were running, and step by step what actions they

took—and at telling the programmers exactly what went wrong:

what error messages they saw and whether the program froze up

or suddenly closed or made the whole computer reboot.

Beta testing is the phase when the programmers think the

program has all the features it should, but still has bugs to get rid

of. Some companies also have an alpha testing phase. Alpha

testing means that the program is not finished, there is still more

to add, but the partial program can be compiled and run, enough

that it can start being tested. People who do alpha testing are

often still called “beta testers.”

Many beta testers are just average users who agree to beta (or

alpha) test a program, generally in exchange for early access to

the program and possibly some trinkets like tee shirts or desk

toys. However, increasingly companies hire professional beta

testers who have a background in a computing field, which gives

them the understanding and vocabulary to give better reports on

bugs to guide the programmer to find and fix the causes more

quickly.

Some companies deliberately release their software while it is

officially still “in beta” (or even alpha!) effectively making their

customers into beta testers. The program is often cheaper during

this phase than it will be later, and customers must accept

(usually explicitly in the EULA) that the program is likely to still

have many bugs.

Scripts and Macros

Scripts are short programs that typically complete some task that

a human would otherwise have to do, often by using other

programs. For instance, a script might search through a list of

files for a certain word, copy out all the lines in the files where

the word occurs, put them into a spreadsheet, and email the

spreadsheet to a certain person.

Macros are short programs that complete some task within

another program. For instance a company might have a macro in

Word that formats every instance of the company’s name in a

certain font, size, and color, or someone might create a macro in

Excel to sort, filter, and add a formula for any selected set of

cells. A macro may be stored inside a data file.

In many cases, macros and scripts may be created by a program

“recording” a user’s actions and generating the program

automatically, instead of being written out by a human.

Sometimes the result is in a high-level language that a human

can further modify. Macros and scripts are almost always

interpreted.

