
Operating Systems 
The Operating System is the program that is in charge of 

everything on the computer.  We don’t want to have to deal with 

details of the hardware in order to tell the computer to run our 

programs and save our files, so the OS provides a buffer, dealing 

with the hardware so we don’t have to.  In fact, in most cases, 

the Operating system also deals with the hardware for our 

application software – programs deal with the OS instead of 

directly with the hardware.  

 

The OS has three general jobs: managing all the resources of the 

computer, providing a user interface, and providing utilities.   



Most OSs are very large programs, so we identify the kernel as 

the part of the OS that needs to run all the time for the computer 

to work, managing essential resources, while other parts of the 

OS, such as utilities and device drivers, can be loaded and 

unloaded as needed. 

A device driver is a program that helps the OS deal with a 

particular piece of hardware.  For example, when you add a new 

printer or graphics card to your system, you need to make sure 

you have the device driver for it, so the OS knows how to 

communicate with it1. 

Windows, MacOS, Android, and UNIX are examples of operating 

systems. 

Utilities 

We distinguish between application software, the kind of program 

that we use for its own sake, such as a word processor, web 

browser, or game, and system software, programs to help us 

manage the computer itself.  The OS is system software, as are 

various utility programs that allow us to perform organizational or 

maintenance tasks on the computer. 

The OS usually provides many utilities, for instance programs 

that run other programs (e.g. Start Menu) programs for 

organizing and browsing files (e.g. Windows Explorer) and 

programs for getting information about the computer’s 

components (e.g. Device Manager).  

Some utilities may not be provided by the OS, for instance not all 

OSs provide antivirus programs, recovery programs, or programs 

                               
1 Often the first advice when you’re having trouble with a particular hardware device is that 

you check that you have an up to date device driver, or reinstall the device driver. 



for re-naming many files at the same time.  But in general, 

utilities have to work closely with the OS. 

User Interface 

The OS provides us with the user interface – the way the 

computer communicates with us and we communicate with it. 

An operating system with a command line UI requires that the 

user type in commands to tell the computer what to do.  If you 

do not know the right commands, you will not be able to use the 

system.  

 

More recent OSs have replaced the command line with GUIs – 

Graphical User Interfaces, which use images.  Most people find 

GUIs easier to use.  However, if you do know the commands for a 

system that uses a command line, you may be able to do tasks, 

especially system maintenance tasks, much faster by typing one 

long command than by clicking many different parts of a GUI. 

Almost all OSs now use WIMP GUIs (Windows, Icons, Menus, 

Pointer).  In a WIMP GUI programs are organized into boxes on 

the screen – Windows.  Choices for actions and data are 

represented by small images – Icons.  Lists of actions are 

provided, usually in a hierarchy that can be expanded – Menus.  



To indicate what they want to do, users move a Pointer around 

the screen.   

The Look and Feel of a UI is its visual style and the overall way 

the user interacts with it.  For example, Windows and Linux have  

a somewhat different Look and Feel.  However both are WIMP 

GUIS. 

 

WIMP GUI has been the standard for OSs for a long time, 

because once people had learned it, they did not want to have to 

learn something else.  This has begun to change because of the 

popularity of mobile devices.  Mobile phones tend not to have 

enough screen space for multiple windows, and a pointer is not 

necessary on a touch screen, so WIMP GUIs are not well-suited to 

that format.   

Kernel 

The OS manages the resources of the computer.  This means it 

must be running all the time.  When the computer starts up, most 

of the job of the ROM is to see to it that the OS gets loaded from 

where it is stored on the hard drive into MM so that it can take 

charge.  However, we don’t usually need all of the tools provided 

by the OS all the time, so only the kernel, the necessary part of 

the OS, is loaded.  The kernel will then stay in MM for as long as 

the computer is running.   



The OS loads other programs, and other parts of the OS, such as 

utilities, into MM, along with their data, and unloads them to 

make room for other things, but the kernel will stay. 

Main Memory has finite space.  Suppose we are designing an OS 

and decide that most of the OS should be in the kernel.  Then the 

kernel will be large, and we will have considerably less space in 

MM for our other programs to run.  If instead we only include the 

bare minimum in the kernel, we will have more space free in MM 

for other things.   

On the other hand, anything included in the kernel is guaranteed 

to be loaded into MM by the time the OS is started, so any 

utilities that are in the kernel will start quickly when they are 

needed.  If most of the OS is not in the kernel, each utility we use 

will take longer to start when we need it.  (An OS with a 

particularly large kernel will take longer to start when we first 

turn on the computer, but then its contents will be faster to 

access.) 

Managing the CPU: Multitasking 

Note that the OS is running all the time, in addition to our other 

programs.  Running more than one program at once is called 

multitasking.  Remember that parallel processing allows us to run 

more than one instruction cycle at the same time on different 

CPUs, so we could run two programs at the same time by parallel 

processing if we have two CPUs.  If we have four CPUs, we could 

run as many as four programs at the same time by parallel 

processing (remember that this includes the OS) but we 

frequently want to run many more programs than we have CPUs.  

A process is a running program.  In some cases we might run the 

same program more than once, in separate processes.  



When there are fewer CPUs than processes to run at the same 

time, the computer cannot truly be running them at the same 

time.  Instead, it fakes multitasking by time slicing:  it switches 

back and forth between processes, doing a little of each at a 

time, so fast that they all seem to be running at the same time.   

Multitasking by Time Slicing 

Suppose we are running two processes on one CPU.  Call the one 

starting at MM101 Process A, and the one starting at MM110 

Process B. 

 

First Process A gets a timeslice: the OS sets the program counter 

to the address of the first instruction in Process A, and then the 

CPU executes a number2 of instructions from Process A.  These 

                               
2 For real computers, which can do billions of instructions per second, this number may be 

very large.  Our example is tiny. 



instructions may involve putting data into the data registers.  It 

will certainly update the program counter at the end of each 

cycle. 

 

Then Process A’s time is up, and it is time for Process B to have a 

turn.  When B gets its timeslice, it will need to use the program 

counter and probably the data registers.  But we want to return 

to Process A later, and continue from where we left off, so we 

need to save anything currently in the data registers, and the 

current value of the program counter for Process A.  Then, to 

start Process B, the program counter must be changed to the 

address of its first instruction.   

This business of saving our place from one process and getting 

ready to start another is called a context switch.  The information 

we will need to continue Process A later, called its state, is stored 



as data in Main Memory by the OS.  The time spent on the 

context switch is called overhead. 

 

Now Process B gets a timeslice, so the CPU executes a number of 

instructions from Process B.  Again these instructions may involve 

putting data into the data registers and will update the program 

counter. 

Note that this does not have any effect visible to the user.  This 

has nothing to do with the user switching programs.  You will 

not see the windows switch on your screen.  This is about what 

instructions are being executed in the CPU.  Hundreds of 

timeslices may happen in a second with no sign of it on your 

screen (except that all your currently open programs keep 

running). 

 



 

Now Process B’s time is up and we need to go back to process A.  

During this context switch, we need to store the state (the 

program counter and data registers) for Process B to MM, and 

also get the values we previously stored for Process A and put 

them back in the CPU.   

In general, a context switch will involve both storing the state of 

the current program to MM and loading the stored state of the 

next process from MM. 



 

Once we have done this context switch, Process A can continue 

from where it left off, with no idea it was ever stopped. 



 

So Process A gets another timeslice, and a number of its 

instructions are executed. 

We continue switching back and forth between these (so fast it 

looks like both run at once) until one of the programs is closed. 

If there are more programs running at the same time, we would 

switch between them, for instance from Process A to Process B to 

Process C to Process D back to Process A, with a context switch 

between each.  Instead of this simple rotation, many operating 

systems have more complex systems for deciding which process 

should get the next timeslice for the best results.  One of the 

most important ways to adjust timeslicing is by adding interrupts. 



Interrupts 

The computer is so fast that it spends a lot of time waiting for 

users to act.  For instance, if you are typing, it has plenty of time 

to work on other tasks between keystrokes.   

 

The program you are typing in may not have enough to do to fill 

up its timeslice because it is waiting for you, so it might want to 

give up the rest of its timeslice so that other programs can get on 

with their work.   



 

So if you are watching a youtube video in a browser window while 

typing in a word processor, the rest of the word processor’s 

timeslice might be given to the browser to work on loading more 

of the video.  The OS may also use this extra time to defragment 

the hard drive or perform other maintenance tasks. 



 

However, we need to be sure that as soon as the next keystroke 

comes in, the program you’re typing in gets it right away.  An 

interrupt is a way for a device, such as a keyboard, to alert the 

OS that there is data available for a program that has been 

waiting.   

When the keyboard causes an interrupt, the OS stops whichever 

program is currently having a timeslice and does a context switch 

back to the program you were typing in.  (Remember that you 

see none of this on the screen, you’re just typing along as usual.)  

Multithreading 

Frequently, a single program needs to do two things at the same 

time.  For instance your web browser may be loading two web 

pages in other tabs while you read the current one, or your word 

processor may be saving and spell-checking your document while 

you type.  A single program doing two things at the same time is 



called multithreading.  Like multitasking, this can be done with 

parallel processing, but mostly ends up being done by time 

slicing. 

Managing Memory 

In addition to managing which program is running in the CPU at 

any time, the OS must manage the use of Main Memory.  We 

have several problems in managing memory space that need to 

be dealt with. 

  

Suppose we’re running two programs in MM.  We know that the 

OS loads them into MM after reading them from the hard drive, 

but suppose that both of them want to use the same addresses in 

MM.  For example, suppose both programs have the instruction 

“STORE R0 MM6” – both were written assuming they can store 



some data at Main Memory address 6.  They can't both occupy 

the same memory locations, but we can’t just have the OS refuse 

to run those two programs at the same time either. 

So one thing the OS needs to do is be able to place programs at 

any MM address and have them run, regardless of what MM 

addresses their instructions use. 

 

Suppose we have managed to load two programs and their data, 

but now one program needs more space for data – e.g. because 

we’ve written a longer document – but the next chunk of free 

space is below the other program.  We don’t want to have to shift 

everything in MM around every time a program needs more 

space; that would slow all our programs down.  So we need to be 

able to run programs anywhere in MM we have room for them, 

even in chunks of space that are not all together.  



If two programs are running at the same time, each should be 

able to store data in MM, but they should not be able to store 

data in each others’ space.  If this were allowed, then at best, 

one program would put its data where the other had some 

instructions, and then the other program would stop with an 

error.  More likely, one program would (maliciously or 

accidentally) replace some of the data of the other program, 

which would then continue to run, but with incorrect results.  This 

could be disastrous – imagine if the data that got changed was 

your bank balance.  So we need to ensure that programs cannot 

overwrite each other in MM. 

  

Suppose we are running several programs (including the OS) and 

finally we simply fill up all the space in MM with programs and 

their data.  But then the user starts one more program.  We want 

to be able to open the program (or open more data files) and just 



keep going, even if we are entirely out of MM space. 

 

It turns out that the solution to all three problems is an approach 

to managing MM called Virtual Memory.   

Virtual Memory 

Virtual Memory is a system for keeping track of what is currently 

stored in Main Memory.   

First, MM is divided into chunks called pages.  Whenever a 

program needs space, it is assigned one or more pages in main 

memory.  However, programs don't know which pages they will 

get each time they run.  When a program is written, it can use 

any memory addresses in its instructions but programs are 



usually written with the assumption that they will get the very 

first page, starting at MM0.  VM allows the OS to let the programs 

think they are getting the memory location they are written for, 

even though they are actually being put in totally different pages.  

 

The addresses used in the program are called logical addresses.  

The addresses of the actual pages the program happens to be in 

at the moment are the physical addresses. 

The OS uses a page table – a table of pages and their contents – 

to keep track of which pages are used by each program.  When 



each instruction in a program is run, the logical addresses it uses 

are first translated to physical addresses using the page table3.   

Suppose each page is 1004 addresses long.  If an instruction uses 

address MM6, that is in the program’s first page.  If the page 

table says the program’s first page starts at MM500, then logical 

address MM6 translates to physical address MM506.  If another 

program whose first page starts at MM600 uses address MM6, 

then for that program it translates to MM606.   

So, we have solved part of the first problem.  The OS can now 

load any program into any pages in memory and run it, 

regardless of what addresses it uses.   

In fact, we have solved the whole first problem.  Suppose a 

program runs out of space; the OS then just assigns it the next 

free page, and translates based on which page the address falls 

in.   

For instance, if a program uses address MM102, that must fall in 

the second page, so if the page table tells us that the second 

page starts at MM700, then MM102 translates to MM702.  Now 

we can run programs in pages that are not next to each other.  It 

wouldn’t even matter if the second page came before the first.  

The programs are never aware that this translation is happening. 

Our second problem was to stop programs from overwriting each 

other in Main Memory.  It turns out that Virtual Memory can 

easily solve this as part of its system of translation.   

Suppose a program has two pages.  Any address within those 

first two pages is in its own space, and doesn’t affect any other 

                               
3 Extra hardware is added to modern computers in order to be able to do this quickly 

enough. 
4 This was chosen for the example because it is a round number for humans.  In the 

computer a round number in binary would be chosen, such as 512 or 1024. 



program.  But suppose it tries to use an address above 199.  

When faced with an address that can’t be translated to a physical 

address within its allocated pages, Virtual Memory triggers an 

error. 

  

If the program actually needed more space for its data, it should 

have requested another page from the operating system. 

Page Swapping 

The third problem Virtual Memory will help us solve is how to 

continue opening more data and programs for current use even 

when we have run out of space in Main Memory.  The solution will 

involve using the Hard Drive as an extension of Main Memory.  



We will temporarily move pages out onto the hard drive and then 

bring them back as needed, using the page table to keep track.  

This is called page swapping. 

  

When we run out of space in MM but try to start another program 

or open another file5, the OS identifies which page in MM is least 

recently used, because that page is likely to go unused for a while 

longer.  The data and/or instructions on that page are temporarily 

copied out onto the hard drive and the page table is updated with 

a hard drive block address instead of a main memory address.  

Then that page in main memory is given to the new program.   

                               
5 Note that in fact, this could happen even if we only had one program open.  If it was a 

large program or using very large data files (e.g. editing video) or we had a very small main 

memory, one program could fill up all the space MM has.  Even an OS with a very big kernel 

might take up too much space for an old computer’s MM. So we don’t have to be 

multitasking to need page swapping. 



 

Each time this happens, the OS is faking that the MM is growing 

one page larger, as it temporarily copy more pages out to the 

hard drive.  Note that the user sees none of this.  The program is 

not being closed.  The program’s data is not being saved.  No 

windows are closed, or moved. 



  

When next we need data or instructions from a page that is now 

on the hard drive, the OS discovers from the page table that the 

page isn't currently in MM.  So the OS must go and read that 

page from the hard drive and bring it back into MM so it can be 

used.   



 

This will probably require choosing another page to move out to 

the hard drive to make room.  Note that there is no particular 

reason that the page should be swapped back to the same 

position it was in previously.  We were translating the logical 

addresses to physical at the old location, we can just as easily 

translate at the new one.  So we still use the least recently used 

page in MM to be the next move out to the HD to make room. 

Note that this process for page swapping relies on having MM 

already divided into pages and having a page table to keep track 

of where the pages of a program are located, so page swapping 

relies on using virtual memory.  

Because the hard drive is slower than main memory, there is one 

effect of page swapping the user might notice eventually.  Every 

time we have to move a page to or from the hard drive, that will 

be slower than just dealing with data stored in MM.  The more 



pages currently on the HD, the slower our programs will seem.  

For this reason, when a computer is slow, people will often 

suggest adding more main memory space6.  Notice, however, 

that what adding more main memory does is avoid page 

swapping, that is, avoid making it slower.  Avoiding getting 

slower is not the same thing as getting faster; if you weren’t 

filling up MM in the first place, adding more certainly won’t speed 

up your computer. 

The space set aside on the hard drive to use for page swapping is 

called the pagefile.  If we have filled all the space in MM and all 

the space currently set aside for the pagefile, then the OS may 

finally alert the user  and ask whether it can increase the size of 

the pagefile.  Note that this decreases the space on the hard 

drive we can use to save other files. If we are out of space on the 

hard drive as well, then the OS must finally admit defeat and 

refuse to open anything else. 

Unfortunately, the Windows message for increasing the amount 

of space for page swapping typically says something like 

“increase space for virtual memory.”  This has led a lot of people 

to be confused about what virtual memory actually means.  Many 

people7 say “virtual memory” when they in fact mean “page 

swapping (which relies on virtual memory).” 

 

 

 

 

                               
6 They might say, “Your computer can’t handle this huge program.  You need to add more 

RAM.” 
7 Sometimes including writers of textbooks.  You should point and laugh at them. 


