
Files
Information saved on the computer is organized

into files. There are files for both programs and

data.

Since there may be thousands of files on a hard

drive, they are organized into a hierarchy – space

on the hard drive is divided into directories (also

known as folders) which can be subdivided again

and again. For example, on most Windows

machines, there is a directory for Program Files, inside of which

there are many directories for different programs. This structure

of directories is called a directory tree.

Each drive on a computer is assigned a drive letter1. The hard

drive is traditionally called C:\. The top-level directory of a drive

is called the root directory.

Two files in the same directory cannot have the same name. The

real name of a file includes the list of directories you would have

to go through to reach the file, starting at the root directory. This

is called the path. For example

C:\Documents\Downloads\Pictures\flowr.jpg says that the file

flowr.jpg is in the directory Pictures, which is in the directory

Download, which is in the directory Documents, which is on the

C:\ drive.

1 In some cases, a single physical drive may be divided up and treated like more than one,

in which case each logical drive is assigned its own drive letter.

Index File and Hard Drive

Physically the hard drive is divided into sectors; a sector is the

amount of data that can be read at once by a magnetic read-

write head, so sectors are very small, too small to be useful for

organizing the files we typically store now. Instead, we divide the

hard drive into larger areas called blocks (also known as

clusters). Each block has a number, the hard drive address.

The index file is how the file system (the part of the operating

system that maintains storage of files) keeps track of where the

data for each file is located on a drive. The index file is a table

listing all the blocks on the drive and their contents: either a

filename (remember that a filename really includes the path,

which is how the directory organization is maintained) or a special

symbol to mark it as empty (not containing data from any current

file).

Most files take up many blocks; an mp3 of a song generally takes

up a few thousand. The index file entry for each block only

contains the file name, not the data, and not how much of the

block is filled with that data.

For the purposes of examples, however, we’ll leave off the path

and pretend that files are only a few blocks in size.

In this example, the index file (shown vertically) says that in

block 99 there is the data for the file homework.doc and in blocks

106 and 107 is data from the file blackmail.jpg. The drive itself

(shown horizontally) is shaded to indicate the actual data stored

in those blocks. Since all blocks on the hard drive contain

magnetic particles, the blocks marked empty do contain some

patterns, just not patterns that are part of any current file. We

will assume all blocks before 99 are full of file data.

Opening Files

Remember that to read from the HD, the HD controller needs to

know the addresses to read. So, to open a file, the file system

needs need to tell the HD controller which block numbers the file

is in.

To find these block numbers, the file system will need to search

through the index file to find all blocks marked with the chosen

file name.

So, once we have the file name, search for that name in the

index file, and find all blocks that match, then send the matching

block numbers to the HD to be read.

Saving Files

 The index file tells us which blocks are not currently in use – the

ones marked empty.

To save a file, the file system always chooses the first empty

block to put it in.

So, suppose in the same situation as our previous example, we

have the file Bank.xlsx which is 1 block in size; to save it we

choose the first empty block, 100.

In the index file, we need to record that this block is where

Bank.xlsx is saved, so we can find it again later, and so we don’t

save something else over it, so we change that line in the index

file from empty to the filename Bank.xlsx.

Now that we know what block to put it in, we send the chosen

block number and the data for Bank.xlsx down the bus to the HD

to be written.

Almost all files will be more than 1 block in size. So, we will

repeat the process of choosing the first empty block and

recording the file name in the index file, then sending the block

numbers and data to the HD to be written, for all blocks of the

file. So after saving koko.mp3, which is 3 blocks, we would have.

If we only marked block 101 with “koko.mp3” in the index file,

then the next time we tried to open it, we would only get 1/3 of

the file, and the next file we save would overwrite the rest of the

file! The file system is not magically all-knowing; if the block still

says empty then the computer will believe the block is empty.

The computer only knows what the index file tells it about the

HD, so the index file must record all the blocks of all current files.

Remember that the computer always chooses the first empty

block. This means that sometimes a file will occupy blocks that

are not contiguous (next to each other). This is called

fragmentation. For instance when we save hamsterdance.avi,

which is 4.6 blocks, it ends up in 104, 105, 108, 109, 110.

Note that we do this even though there would have been enough

space to put all the blocks of hamsterdance.avi together. Either

way, it would be divided into blocks, but if the blocks are not next

to each other, it is fragmented.

Note that there is nothing in 110 in the index file to indicate that

only .6 of that block is filled with data. Each block in the index

file is either marked empty or contains a file name.

The computer will not scan the data on all blocks of the HD

looking for empty space. If it did, saving each file could take

several minutes. The computer also does not magically know

that some blocks are only partly full. It depends only on what the

index file says.

So, when we try to save WedNotes.txt, which is only .3 of a

block, the computer finds the first block marked empty at 111,

and uses this, even though technically the data would fit at the

end of block 110.

The wasted space at the end of a block (as in 110 and 111 here)

is called slack space.

Deleting Files

Since accidentally deleting the wrong file is a common problem,

most operating systems put an intermediate step in the deletion

process. When we first tell the computer to delete a file, the

computer instead just moves it to a special directory called

something like "Recycling Bin." This does not remove the data or

remove the file from the index file or even change which block

the file is in on the hard drive. It simply changes the path. Files

in the recycle bin can be moved back to their original directory

until we "empty" the recycle bin and the files are actually deleted.

When we talk about deletion in this course, we always mean this

actual deletion, not this intermediate move to the recycle bin.

When we delete a file, our goal is to be sure that it can no longer

be found when looking at the directory tree structure, and that

we can use that space for other files. So we need to make sure

that the blocks for that file are marked empty in the index file.

So, if we are deleting the file homework.doc, we need to find all

blocks with that filename in the index file, and make sure they

are changed to be marked empty. In this case there was only

one block.

Since the file’s former blocks on the hard drive are going to

contain some patterns until we write a new file there, it costs us

nothing to leave the file’s patterns in place until then, and it

would cost time to change them, so updating the index file is the

only thing that happens when we delete. The file’s data is still

there, but no longer accessible. (Remember, this is totally

separate from the file previously being sent to the recycle bin,

which only changes the path to the file, but leaves it in the index

file!)

A recovery program can be used to get back deleted files, if the

data is still there and the blocks have not been written over by

new files2. The recovery program bypasses the index file and

looks at the contents of all the blocks on the hard drive and

makes up its own list of what is in them. Any data still there

from deleted files can then be recovered. Usually, these

programs are used to get back important data that was deleted

accidentally, but they may be used by agents of the law to

investigate files that criminals have tried to get rid of, or by

criminals to try to extract data (e.g. passwords) from computers

that have been discarded.

2 Although, even if the blocks are overwritten, suppose one is overwritten by the last block

of a new file, which has some slack space. Then a tiny bit of the data from the file could

still be there at the end of the block even though the block is “overwritten.”

To avoid deleted data being recovered, instead of deleting

normally, we should use a secure delete or “shredder” program,

which first overwrites all the blocks of a file, and then does a

normal delete.

When we next save a file, block 99 is the first empty block, so it

will get used, and at that point the data from homework.doc is

replaced, and can no longer be recovered.

Deleting leaves empty areas on the HD, which can result in later

saved files being fragmented, as has happened to sunset.gif here.

Slack Space

Since few files’ size are an exact multiple of the size of a block,

most files have a little bit of extra space at the end of the last

block they occupy. This is called slack space. The slack space is

space that cannot be used to store data for any other file, so lots

of slack space means we are not making the best use of our

space.

Note that the amount of slack space is determined by the size of

the blocks: we can never have more than one block worth of

slack space per file. So, if we make the block size smaller, that

limits the amount of slack space. However, if we divide the hard

drive into smaller blocks, then there will be more blocks to keep

track of – the index file will be longer – so every time we open or

save or delete a file, it will take longer because we have more

blocks to deal with.

By contrast, if we use larger blocks, the index file will be shorter,

which makes dealing with files faster, but this results in more

slack space.

For home computers, hard drives are set up with fairly small

block sizes, since we tend to have many small files. This means

that slack space really wastes very little space.

Fragmentation

Because we always choose the first empty block when saving,

files can end up fragmented when we save a larger file after

deleting several smaller ones. A file is said to be fragmented

when its blocks are not contiguous (side-by-side).

If the blocks of a file are widely separated on the drive, then

there will be a lot of latency in reading and writing the file – lots

of time spent waiting for the read-write heads to get from spot to

spot on the hard drive. This means that opening and saving the

file takes longer.

As we delete and save files on our computers, the files tend to

become more and more fragmented, and over time the computer

gets slower and slower.

The only way to avoid fragmentation entirely would be to change

the way we save files: instead of saving in the first empty spot,

we could search until we find enough empty blocks in a row. But

for a file that needs several thousand blocks, this may take a very

long time, and enough contiguous blocks in a row might not exist.

If we did this, saving files would simply take too long.

So, instead of avoiding fragmentation, we periodically defragment

our drives. Defragmentation swaps around blocks of files until

each file’s block are contiguous3. To do this to all of a large drive

full of fragmented files may take a long time. Most current

computers do a little bit of defragmentation automatically on a

regular basis so that it never gets too bad, while other types of

computer require users to periodically choose to run a

defragmentation process.

3 Note that this makes security and privacy a bit more difficult. If the blocks of a file storing

sensitive data are moved around during defragmentation, we could end up with multiple

copies of that data on the drive. If we later securely delete the file from its new position,

that won’t get rid of the copies left behind in other blocks. For this reason, it is better to

wipe or destroy the entire drive if it has sensitive information.

